Learning Fixed Points in Generative Adversarial Networks: From Image-to-Image Translation to Disease Detection and Localization

被引:0
|
作者
Siddiquee, Md Mahfuzur Rahman [1 ]
Zhou, Zongwei [1 ,3 ]
Tajbakhsh, Nima [1 ]
Feng, Ruibin [1 ]
Gotway, Michael B. [2 ]
Bengio, Yoshua [3 ]
Liang, Jianming [1 ,3 ]
机构
[1] Arizona State Univ, Tempe, AZ 85287 USA
[2] Mayo Clin, Rochester, MN USA
[3] Mila Quebec Artificial Intelligence Inst, Montreal, PQ, Canada
关键词
D O I
10.1109/ICCV.2019.00028
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generative adversarial networks (GANs) have ushered in a revolution in image-to-image translation. The development and proliferation of GANs raises an interesting question: can we train a GAN to remove an object, if present, from an image while otherwise preserving the image? Specifically, can a GAN "virtually heal'' anyone by turning his medical image, with an unknown health status (diseased or healthy), into a healthy one, so that diseased regions could be revealed by subtracting those two images? Such a task requires a GAN to identify a minimal subset of target pixels for domain translation, an ability that we call fixed-point translation, which no GAN is equipped with yet. Therefore, we propose a new GAN, called Fixed-Point GAN, trained by (1) supervising same-domain translation through a conditional identity loss, and (2) regularizing cross-domain translation through revised adversarial, domain classification, and cycle consistency loss. Based on fixed-point translation, we further derive a novel framework for disease detection and localization using only image-level annotation. Qualitative and quantitative evaluations demonstrate that the proposed method outperforms the state of the art in multi-domain image-to-image translation and that it surpasses predominant weakly-supervised localization methods in both disease detection and localization.
引用
收藏
页码:191 / 200
页数:10
相关论文
共 50 条
  • [1] Unified Generative Adversarial Networks for Controllable Image-to-Image Translation
    Tang, Hao
    Liu, Hong
    Sebe, Nicu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 8916 - 8929
  • [2] Deep Generative Adversarial Networks for Image-to-Image Translation: A Review
    Alotaibi, Aziz
    SYMMETRY-BASEL, 2020, 12 (10): : 1 - 26
  • [3] LEVERAGING IMAGE-TO-IMAGE TRANSLATION GENERATIVE ADVERSARIAL NETWORKS FOR FACE AGING
    Pantraki, Evangelia
    Kotropoulos, Constantine
    Lanitis, Andreas
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 8370 - 8374
  • [4] Fingerprinting Image-to-Image Generative Adversarial Networks
    Li, Guanlin
    Xu, Guowen
    Qiu, Han
    Guo, Shangwei
    Wang, Run
    Li, Jiwei
    Zhang, Tianwei
    Lu, Rongxing
    9TH EUROPEAN SYMPOSIUM ON SECURITY AND PRIVACY, EUROS&P 2024, 2024, : 41 - 61
  • [5] Attention-Guided Generative Adversarial Networks for Unsupervised Image-to-Image Translation
    Tang, Hao
    Xu, Dan
    Sebel, Nicu
    Yan, Yan
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [6] Joint image-to-image translation with denoising using enhanced generative adversarial networks
    Yan, Lan
    Zheng, Wenbo
    Wang, Fei-Yue
    Gou, Chao
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2021, 91
  • [7] Image-to-Image Translation with Conditional Adversarial Networks
    Isola, Phillip
    Zhu, Jun-Yan
    Zhou, Tinghui
    Efros, Alexei A.
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5967 - 5976
  • [8] Knowledge Distillation Generative Adversarial Network for Image-to-Image Translation
    Sub-r-pa, Chayanon
    Chen, Rung-Ching
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2024, 15 (08) : 896 - 902
  • [9] Image-to-Image Translation using a Relativistic Generative Adversarial Network
    Xing, Xingrun
    Zhang, Dawei
    ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2019), 2019, 11179
  • [10] Dual Generator Generative Adversarial Networks for Multi-domain Image-to-Image Translation
    Tang, Hao
    Xu, Dan
    Wang, Wei
    Yan, Yan
    Sebe, Nicu
    COMPUTER VISION - ACCV 2018, PT I, 2019, 11361 : 3 - 21