A positivity-preserving numerical scheme for a nonlinear fourth order parabolic system

被引:0
|
作者
Jüngel, A [1 ]
Pinnau, R
机构
[1] Univ Konstanz, Fachbereich Math & Stat, D-78457 Constance, Germany
[2] Tech Univ Darmstadt, Fachbereich Math, D-64289 Darmstadt, Germany
关键词
higher order parabolic PDE; positivity; semidiscretization; stability; convergence; semiconductor;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A positivity-preserving numerical scheme for a fourth order nonlinear parabolic system arising in quantum semiconductor modeling is studied. The system is numerically treated by introducing an additional nonlinear potential and a subsequent semidiscretization in time. The resulting sequence of nonlinear second order elliptic systems admits at each time level strictly positive solutions, which is proved by an exponential transformation of variables. The stability of the scheme is shown and convergence is proved in one space dimension. Numerical results concerning the switching behavior of a resonant tunneling diode are presented.
引用
收藏
页码:385 / 406
页数:22
相关论文
共 50 条
  • [1] A Positivity-Preserving Numerical Scheme for Nonlinear Option Pricing Models
    Zhou, Shengwu
    Li, Wei
    Wei, Yu
    Wen, Cui
    JOURNAL OF APPLIED MATHEMATICS, 2012,
  • [2] An extended seventh-order compact nonlinear scheme with positivity-preserving property
    Zhang, Huaibao
    Xu, Chunguang
    Dong, Haibo
    COMPUTERS & FLUIDS, 2021, 229
  • [3] A POSITIVITY-PRESERVING AND CONVERGENT NUMERICAL SCHEME FOR THE BINARY FLUID-SURFACTANT SYSTEM
    Qin, Yuzhe
    Wang, Cheng
    Zhang, Zhengru
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2021, 18 (03) : 399 - 425
  • [4] A positivity-preserving scheme for fluctuating hydrodynamics
    Magaletti, Francesco
    Gallo, Mirko
    Perez, Sergio P.
    Carrillo, Jose A.
    Kalliadasis, Serafim
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 463
  • [5] A POSITIVITY-PRESERVING, ENERGY STABLE AND CONVERGENT NUMERICAL SCHEME FOR THE POISSON-NERNST-PLANCK SYSTEM
    Liu, Chun
    Wang, Cheng
    Wise, Steven M.
    Yue, Xingye
    Zhou, Shenggao
    MATHEMATICS OF COMPUTATION, 2021, 90 (331) : 2071 - 2106
  • [6] A positivity-preserving adaptive-order finite-difference scheme for GRMHD
    Deppe, Nils
    Kidder, Lawrence E.
    Teukolsky, Saul A.
    Bonilla, Marceline S.
    Hebert, Francois
    Kim, Yoonsoo
    Scheel, Mark A.
    Throwe, William
    Vu, Nils L.
    CLASSICAL AND QUANTUM GRAVITY, 2023, 40 (24)
  • [7] A LINEAR, DECOUPLED AND POSITIVITY-PRESERVING NUMERICAL SCHEME FOR AN EPIDEMIC MODEL WITH ADVECTION AND DIFFUSION
    Kou, Jisheng
    Chen, Huangxin
    Wang, Xiuhua
    Sun, Shuyu
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (01) : 40 - 57
  • [8] A positivity-preserving high-order weighted compact nonlinear scheme for compressible gas-liquid flows
    Wong, Man Long
    Angel, Jordan B.
    Barad, Michael F.
    Kiris, Cetin C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 444
  • [9] A second-order positivity preserving scheme for semilinear parabolic problems
    Hansen, Eskil
    Kramer, Felix
    Ostermann, Alexander
    APPLIED NUMERICAL MATHEMATICS, 2012, 62 (10) : 1428 - 1435
  • [10] A positivity-preserving high order discontinuous Galerkin scheme for convection-diffusion equations
    Srinivasan, Sashank
    Poggie, Jonathan
    Zhang, Xiangxiong
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 366 : 120 - 143