Mathematical foundations of the Golden Rule. I. Static case

被引:12
|
作者
Zhukovskiy, V. I. [1 ]
Kudryavtsev, K. N. [2 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
[2] Natl Res Univ, South Ural State Univ, Chelyabinsk, Russia
基金
俄罗斯基础研究基金会;
关键词
non-cooperative game; Berge equilibrium; Pareto maximum;
D O I
10.1134/S0005117917100149
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Berge equilibrium concept was suggested by Russian mathematician K. Vaisman in 1994. In this paper, we suggest to use this concept as a mathematical model of the Golden Rule. The Berge-Pareto equilibrium is formalized and sufficient conditions for the existence of the equilibrium are found. As a supplement, the existence of the mixed strategy equilibrium is proved.
引用
收藏
页码:1920 / 1940
页数:21
相关论文
共 50 条
  • [1] Mathematical foundations of the Golden Rule. I. Static case
    V. I. Zhukovskiy
    K. N. Kudryavtsev
    Automation and Remote Control, 2017, 78 : 1920 - 1940
  • [2] Mathematical Foundations of the Golden Rule. II. Dynamic Case
    V. I. Zhukovskiy
    L. V. Smirnova
    A. S. Gorbatov
    Automation and Remote Control, 2018, 79 : 1929 - 1952
  • [3] Mathematical Foundations of the Golden Rule. II. Dynamic Case
    Zhukovskiy, V. I.
    Smirnova, L. V.
    Gorbatov, A. S.
    AUTOMATION AND REMOTE CONTROL, 2018, 79 (10) : 1929 - 1952
  • [4] The golden rule.
    Kelm, RS
    LIBRARY JOURNAL, 1998, 123 (17) : 101 - 101
  • [5] Genesis of the Golden Rule.
    Apresyan, R. G.
    VOPROSY FILOSOFII, 2013, (10) : 39 - 49
  • [6] The golden rule. The return of a forgotten maxim
    Turcotte, Nestor
    LAVAL THEOLOGIQUE ET PHILOSOPHIQUE, 2010, 66 (03): : 620 - 621
  • [7] The Golden Rule. The return of a forgotten maxim
    Renouard, Christine
    ETUDES THEOLOGIQUES ET RELIGIEUSES, 2011, 86 (02): : 264 - 265
  • [8] The Golden Rule. History of a universal moral maxim
    Renouard, Christine
    ETUDES THEOLOGIQUES ET RELIGIEUSES, 2012, 87 (03): : 403 - 403
  • [9] Compass and Rule. Architecture as Mathematical Practice in England
    Hopkins, Owen
    BURLINGTON MAGAZINE, 2010, 152 (1285): : 250 - 251
  • [10] The hyperbolic tangent distribution and its applications - I. Mathematical foundations
    Blickle, T
    Lakatos, BG
    Ulbert, Z
    Mihalyko, C
    HUNGARIAN JOURNAL OF INDUSTRIAL CHEMISTRY, 1998, 26 (02): : 89 - 96