[2] Pablo Olavide Univ, Sch Engn, Area Comp Sci, Seville, Spain
来源:
INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2007
|
2007年
/
4881卷
关键词:
gene expression data;
biclustering;
shifting and scaling patterns;
unconstrained optimization;
D O I:
暂无
中图分类号:
TP3 [计算技术、计算机技术];
学科分类号:
0812 ;
摘要:
Microarray techniques have motivated the develop of different methods to extract useful information from a biological point of view. Biclustering algorithms obtain a set of genes with the same behaviour over a group of experimental conditions from gene expression data. In order to evaluate the quality of a bicluster, it is useful to identify specific tendencies represented by patterns on data. These patterns describe the behaviour of a bicluster obtained previously by an adequate biclustering technique from gene expression data. In this paper a new measure for evaluating biclusters is proposed. This measure captures a special kind of patterns with scaling trends which represents quality patterns. They are not contemplated with the previous evaluating measure accepted in the literature. This work is a first step to investigate methods that search biclusters based on the concept of shift and scale invariance. Experimental results based on the yeast cell cycle and the human B-cell lymphoma datasets are reported. Finally, the performance of the proposed technique is compared with an optimization method based on the Nelder-Mead Simplex search algorithm.