Electron microscopy of GaAs/MnAs core/shell nanowires

被引:17
|
作者
Dellas, N. S. [1 ]
Liang, J. [2 ]
Cooley, B. J. [2 ]
Samarth, N. [2 ]
Mohney, S. E. [1 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
关键词
D O I
10.1063/1.3481066
中图分类号
O59 [应用物理学];
学科分类号
摘要
GaAs/MnAs core/shell nanowire heterostructures were synthesized by catalyst-free molecular beam epitaxy. Transmission electron microscopy (TEM) reveals that the GaAs core predominantly grows with the zinc-blende crystal structure with a [111] growth direction. In a small population of wires, the crystal structure transitions from zinc blende to wurtzite with a [001] growth direction. Cross-sectional TEM shows that the MnAs grows epitaxially on the GaAs core in the NiAs prototype structure with an epitaxial relation of [20 (2) over bar1] MnAs parallel to[111]GaAs and (01 (1) over bar0) MnAs parallel to GaAs ((1) over bar 10). When the GaAs core is in the wurtzite structure, the epitaxial relation between the GaAs and MnAs changes to [0001] MnAs parallel to[0001]GaAs and ((1) over bar2 (1) over bar0) MnAs parallel to((1) over bar2 (1) over bar0)GaAs. (C) 2010 American Institute of Physics. [doi:10.1063/1.3481066]
引用
收藏
页数:3
相关论文
共 50 条
  • [1] Measurement and simulation of anisotropic magnetoresistance in single GaAs/MnAs core/shell nanowires
    Liang, J.
    Wang, J.
    Paul, A.
    Cooley, B. J.
    Rench, D. W.
    Dellas, N. S.
    Mohney, S. E.
    Engel-Herbert, R.
    Samarth, N.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (18)
  • [2] Strain in GaAs-MnAs core-shell nanowires grown by molecular beam epitaxy
    Hilse, M.
    Takagaki, Y.
    Ramsteiner, M.
    Herfort, J.
    Breuer, S.
    Geelhaar, L.
    Riechert, H.
    [J]. JOURNAL OF CRYSTAL GROWTH, 2011, 323 (01) : 307 - 310
  • [3] Plan-view transmission electron microscopy investigation of GaAs/(In,Ga)As core-shell nanowires
    Grandal, Javier
    Wu, Mingjian
    Kong, Xiang
    Hanke, Michael
    Dimakis, Emmanouil
    Geelhaar, Lutz
    Riechert, Henning
    Trampert, Achim
    [J]. APPLIED PHYSICS LETTERS, 2014, 105 (12)
  • [4] In As/GaAs Core-Shell Nanowires
    Popovitz-Biro, Ronit
    Kretinin, Andrey
    Von Huth, Palle
    Shtrikman, Hadas
    [J]. CRYSTAL GROWTH & DESIGN, 2011, 11 (09) : 3858 - 3865
  • [5] GaAs-MnAs nanowires
    Sadowski, Janusz
    Siusys, Aloyzas
    Kovacs, Andras
    Kasama, Takeshi
    Dunin-Borkowski, Rafal E.
    Wojciechowski, Tomasz
    Reszka, Anna
    Kowalski, Bogdan
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2011, 248 (07): : 1576 - 1580
  • [6] Electron Interference in Hall Effect Measurements on GaAs/InAs Core/Shell Nanowires
    Haas, Fabian
    Zellekens, Patrick
    Lepsa, Mihail
    Rieger, Torsten
    Gruetzmacher, Detlev
    Lueth, Hans
    Schaepers, Thomas
    [J]. NANO LETTERS, 2017, 17 (01) : 128 - 135
  • [7] Effects of VLS and VS mechanisms during shell growth in GaAs-AlGaAs core-shell nanowires investigated by transmission electron microscopy
    Scuderi, Mario
    Prete, Paola
    Lovergine, Nico
    Spinella, Corrado
    Nicotra, Giuseppe
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2017, 65 : 108 - 112
  • [8] Towards higher electron mobility in modulation doped GaAs/AlGaAs core shell nanowires
    Boland, Jessica L.
    Tutuncuoglu, Gozde
    Gong, Juliane Q.
    Conesa-Boj, Sonia
    Davies, Christopher L.
    Herz, Laura M.
    Fontcuberta i Morral, Anna
    Johnston, Michael B.
    [J]. NANOSCALE, 2017, 9 (23) : 7839 - 7846
  • [9] Magnetic properties of GaAs/Fe core/shell nanowires
    Pimpinella, R. E.
    Zhang, D.
    McCartney, M. R.
    Smith, D. J.
    Krycka, K. L.
    Kirby, B. J.
    O'Dowd, B. J.
    Sonderhouse, L.
    Leiner, J.
    Liu, X.
    Dobrowolska, M.
    Furdyna, J. K.
    [J]. JOURNAL OF APPLIED PHYSICS, 2013, 113 (17)
  • [10] Polytypism in GaAs/GaNAs core-shell nanowires
    Yukimune, M.
    Fujiwara, R.
    Mita, T.
    Ishikawa, F.
    [J]. NANOTECHNOLOGY, 2020, 31 (50)