Prediction and discrimination of pharmacological activity by using artificial neural networks

被引:0
|
作者
Castro, MJ
Díaz, W
Aibar, P
Domínguez, JL
机构
[1] Univ Politecn Valencia, Dept Sistemas Informat Computacio, E-46071 Valencia, Spain
[2] Univ Valencia, Dept Informat, E-46100 Burjassot, Valencia, Spain
[3] Univ Jaume 1, Dept Llenguatges & Sistemas Informat, E-12071 Castellon de La Plana, Spain
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The design of new medical drugs is a very complex process in which combinatorial chemistry techniques are used. For this reason, it is very useful to have tools to predict and to discriminate the pharmacological activity of a given molecular compound so that the laboratory experiments can be directed to those molecule groups in which there is a high probability of finding new compounds with the desired properties. This work presents an application of Artificial Neural Networks to the problem of discriminating and predicting pharmacological characteristics of a molecular compound from its topological properties. A large amount of different configurations are tested, yielding very good performances.
引用
收藏
页码:184 / 192
页数:9
相关论文
共 50 条
  • [1] Discrimination of Seismic Signals Using Artificial Neural Networks
    Benbrahim, Mohammed
    Daoudi, Adil
    Benjelloun, Khalid
    Ibenbrahim, Aomar
    [J]. PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 4, 2005, 4 : 4 - 7
  • [2] Yield Prediction Using Artificial Neural Networks
    Baral, Seshadri
    Tripathy, Asis Kumar
    Bijayasingh, Pritiranjan
    [J]. COMPUTER NETWORKS AND INFORMATION TECHNOLOGIES, 2011, 142 : 315 - +
  • [3] Prediction of microbial activity during biosolids composting using artificial neural networks
    Liang, C
    Das, KC
    McClendon, RW
    [J]. TRANSACTIONS OF THE ASAE, 2003, 46 (06): : 1713 - 1719
  • [4] Antioxidant activity prediction and classification of some teas using artificial neural networks
    Cimpoiu, Claudia
    Cristea, Vasile-Mircea
    Hosu, Anamaria
    Sandru, Mihaela
    Seserman, Liana
    [J]. FOOD CHEMISTRY, 2011, 127 (03) : 1323 - 1328
  • [5] MARINE MAMMAL CALL DISCRIMINATION USING ARTIFICIAL NEURAL NETWORKS
    POTTER, JR
    MELLINGER, DK
    CLARK, CW
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1994, 96 (03): : 1255 - 1262
  • [6] Prediction of Sediment Concentration Using Artificial Neural Networks
    Dogan, Emrah
    [J]. TEKNIK DERGI, 2009, 20 (01): : 4567 - 4582
  • [7] Time series prediction using artificial neural networks
    Pérez-Chavarríia, MA
    Hidalgo-Silva, HH
    Ocampo-Torres, FJ
    [J]. CIENCIAS MARINAS, 2002, 28 (01) : 67 - 77
  • [8] Stability Prediction of ΔΣ Modulators using Artificial Neural Networks
    Kaesser, Paul
    Kaltenstadler, Sebastian
    Conrad, Joschua
    Wagner, Johannes
    Ismail, Omar
    Ortmanns, Maurits
    [J]. 2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [9] Prediction of hydrocyclone performance using artificial neural networks
    Karimi, M.
    Dehghani, A.
    Nezamalhosseini, A.
    Talebi, Sh
    [J]. JOURNAL OF THE SOUTH AFRICAN INSTITUTE OF MINING AND METALLURGY, 2010, 110 (05): : 207 - 212
  • [10] Prediction of extrudate properties using artificial neural networks
    Shankar, T. J.
    Bandyopadhyay, S.
    [J]. FOOD AND BIOPRODUCTS PROCESSING, 2007, 85 (C1) : 29 - 33