A non-Hausdorff model for the complement of a complexified hyperplane arrangement

被引:3
|
作者
Proudfoot, Nicholas [1 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
关键词
D O I
10.1090/S0002-9939-07-08949-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a hyperplane arrangement A in a real vector space V, we introduce a real algebraic prevariety Z( A), and exhibit the complement of A in the complexi. cation of V as the total space of an a. ne bundle over Z( A) with fibers modeled on the dual vector space V-v.
引用
收藏
页码:3989 / 3994
页数:6
相关论文
共 50 条
  • [1] ON NON-HAUSDORFF SPACES
    REILLY, IL
    TOPOLOGY AND ITS APPLICATIONS, 1992, 44 (1-3) : 331 - 340
  • [2] NON-HAUSDORFF ETALE GROUPOIDS
    Exel, R.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (03) : 897 - 907
  • [3] A non-Hausdorff quaternion multiplication
    Hardie, KA
    Salbany, S
    Vermeulen, JJC
    Witbooi, PJ
    THEORETICAL COMPUTER SCIENCE, 2003, 305 (1-3) : 135 - 158
  • [4] A Non-Hausdorff Minimax Theorem
    Goubault-Larrecq, Jean
    MINIMAX THEORY AND ITS APPLICATIONS, 2018, 3 (01): : 73 - 80
  • [5] NON-HAUSDORFF CONVERGENCE SPACES
    GAZIK, RJ
    PACIFIC JOURNAL OF MATHEMATICS, 1983, 106 (02) : 257 - 264
  • [6] Expansive homeomorphisms on non-Hausdorff spaces
    Achigar, M.
    Artigue, A.
    Monteverde, I.
    TOPOLOGY AND ITS APPLICATIONS, 2016, 207 : 109 - 122
  • [7] Non-Hausdorff symmetries of C*-algebras
    Alcides Buss
    Ralf Meyer
    Chenchang Zhu
    Mathematische Annalen, 2012, 352 : 73 - 97
  • [8] The Fell compactification and non-Hausdorff groupoids
    Timmermann, Thomas
    MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (3-4) : 1105 - 1111
  • [9] Non-Hausdorff symmetries of C*-algebras
    Buss, Alcides
    Meyer, Ralf
    Zhu, Chenchang
    MATHEMATISCHE ANNALEN, 2012, 352 (01) : 73 - 97
  • [10] The Fell compactification and non-Hausdorff groupoids
    Thomas Timmermann
    Mathematische Zeitschrift, 2011, 269 : 1105 - 1111