On the perturbation of self-organized urban street networks

被引:1
|
作者
Benoit, Jerome G. M. [1 ]
Jabari, Saif Eddin G. [1 ,2 ]
机构
[1] New York Univ Abu Dhabi, POB 129188, Abu Dhabi, U Arab Emirates
[2] NYU, Tandon Sch Engn, Brooklyn, NY 11201 USA
关键词
Urban street networks; Self-organizing networks; Entropic equilibrium; MaxEnt; Power law; City science; Interdisciplinary physics; Information physics; Statistical physics; Surprisal; Wholeness; Big data; INFORMATION-THEORY; PROBABILITY; PHYSICS; ORIGIN;
D O I
10.1007/s41109-019-0153-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We investigate urban street networks as a whole within the frameworks of information physics and statistical physics. Urban street networks are envisaged as evolving social systems subject to a Boltzmann-mesoscopic entropy conservation. For self-organized urban street networks, our paradigm has already allowed us to recover the effectively observed scale-free distribution of roads and to foresee the distribution of junctions. The entropy conservation is interpreted as the conservation of the surprisal of the city-dwellers for their urban street network. In view to extend our investigations to other urban street networks, we consider to perturb our model for self-organized urban street networks by adding an external surprisal drift. We obtain the statistics for slightly drifted self-organized urban street networks. Besides being practical and manageable, this statistics separates the macroscopic evolution scale parameter from the mesoscopic social parameters. This opens the door to observational investigations on the universality of the evolution scale parameter. Ultimately, we argue that the strength of the external surprisal drift might be an indicator for the disengagement of the city-dwellers for their city.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] On the perturbation of self-organized urban street networks
    Jérôme G. M. Benoit
    Saif Eddin G. Jabari
    [J]. Applied Network Science, 4
  • [2] On equilibrium Metropolis simulations on self-organized urban street networks
    Jérôme G. M. Benoit
    Saif Eddin G. Jabari
    [J]. Applied Network Science, 6
  • [3] Topological patterns in street networks of self-organized urban settlements
    C. Buhl
    J. Gautrais
    N. Reeves
    R. V. Solé
    S. Valverde
    P. Kuntz
    G. Theraulaz
    [J]. The European Physical Journal B - Condensed Matter and Complex Systems, 2006, 49 : 513 - 522
  • [4] Topological patterns in street networks of self-organized urban settlements
    Buhl, J.
    Gautrais, J.
    Reeves, N.
    Sole, R. V.
    Valverde, S.
    Kuntz, P.
    Theraulaz, G.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2006, 49 (04): : 513 - 522
  • [5] On equilibrium Metropolis simulations on self-organized urban street networks
    Benoit, Jerome G. M.
    Jabari, Saif Eddin G.
    [J]. APPLIED NETWORK SCIENCE, 2021, 6 (01)
  • [6] Exploring the patterns and evolution of self-organized urban street networks through modeling
    Rui, Yikang
    Ban, Yifang
    Wang, Jiechen
    Haas, Jan
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (03):
  • [7] Exploring the patterns and evolution of self-organized urban street networks through modeling
    Yikang Rui
    Yifang Ban
    Jiechen Wang
    Jan Haas
    [J]. The European Physical Journal B, 2013, 86
  • [8] Navigation on self-organized networks
    Bordenave, Charles
    [J]. 2006 4TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC AND WIRELESS NETWORKS, VOLS 1 AND 2, 2006, : 685 - 693
  • [9] Self-organized criticality and urban development
    Batty, M
    Xie, YC
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 1999, 3 (2-3) : 109 - 124
  • [10] Conductivity and mechanics in self-organized networks
    Tew, Gregory
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253