A linearization technique for multi-species transport problems

被引:3
|
作者
Romeiro, Neyva M. L.
Castro, Rigoberto G. S.
Malta, Sandra M. C.
Landau, Luiz
机构
[1] Univ Fed Estado Rio de Janerio, DME, BR-22290240 Urca, RJ, Brazil
[2] Univ Estadual Londrina, BR-86051990 Londrina, PR, Brazil
[3] Univ Estadual Norte Fluminense, BR-28013600 Goytagazes, RJ, Brazil
[4] Univ Fed Rio de Janeiro, COPPE, BR-21945970 Rio De Janeiro, RJ, Brazil
关键词
Taylor's series expansions; analytical solutions; stabilized finite element method; nonlinear reactions; multi-species transport models;
D O I
10.1007/s11242-006-9081-4
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
We study a one-dimensional multi-species system of dispersive-advective contaminant transport equations coupled by nonlinear biological (kinetic reactions) and physical (adsorption) processes. To deal with the nonlinearities and the coupling, and to avoid additional computational costs, we propose a linearization technique based on first-order Taylor's series expansions. A stabilized finite element in space, combined with an Euler implicit finite difference discretization in time, is used to approximate the dispersive-advective transport problem. Three computational tests are performed with different boundary conditions, retardation factors and kinetic parameters for a nonlinear reactive multi-species transport model. The proposed methodology is shown to be accurate and decrease computational costs in the numerical implementation of nonlinear reactive transport problems.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [1] A linearization technique for multi-species transport problems
    Neyva M. L. Romeiro
    Rigoberto G. S. Castro
    Sandra M. C. Malta
    Luiz Landau
    [J]. Transport in Porous Media, 2007, 70 : 1 - 10
  • [2] A decomposition method for solving coupled multi-species reactive transport problems
    Sun, YW
    Clement, TP
    [J]. TRANSPORT IN POROUS MEDIA, 1999, 37 (03) : 327 - 346
  • [3] Multi-species Neutron Transport Equation
    Cox, Alexander M. G.
    Harris, Simon C.
    Horton, Emma L.
    Kyprianou, Andreas E.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2019, 176 (02) : 425 - 455
  • [4] Multi-species Neutron Transport Equation
    Alexander M. G. Cox
    Simon C. Harris
    Emma L. Horton
    Andreas E. Kyprianou
    [J]. Journal of Statistical Physics, 2019, 176 : 425 - 455
  • [5] Problems of multi-species organisms: endosymbionts to holobionts
    Queller, David C.
    Strassmann, Joan E.
    [J]. BIOLOGY & PHILOSOPHY, 2016, 31 (06) : 855 - 873
  • [6] Problems of multi-species organisms: endosymbionts to holobionts
    David C. Queller
    Joan E. Strassmann
    [J]. Biology & Philosophy, 2016, 31 : 855 - 873
  • [7] Transport in non-ideal, multi-species plasmas
    Stanton, Liam G.
    Bergeson, Scott D.
    Murillo, Michael S.
    [J]. PHYSICS OF PLASMAS, 2021, 28 (05)
  • [8] KINETIC TREATMENT OF MULTI-SPECIES PFIRSCH-SCHLUTER TRANSPORT
    CRUME, EC
    TSANG, KT
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (10): : 1259 - 1259
  • [9] NUMERICAL-SIMULATION OF MULTI-SPECIES IMPURITY TRANSPORT IN TOKAMAKS
    AMANO, T
    CRUME, EC
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1977, 22 (09): : 1095 - 1095
  • [10] Multi-species transport in saturated cement-based materials
    Truc, O
    Ollivier, JP
    Nilsson, LO
    [J]. 2ND INTERNATIONAL RILEM WORKSHOP ON TESTING AND MODELLING THE CHLORIDE INGRESS INTO CONCRETE, 2000, 19 : 247 - 259