Transfer hydrogenation of biomass-derived levulinic acid to γ-valerolactone over supported Ni catalysts

被引:91
|
作者
Hengne, A. M. [1 ]
Kadu, B. S. [2 ]
Biradar, N. S. [1 ]
Chikate, R. C. [2 ]
Rode, C. V. [1 ]
机构
[1] CSIR Natl Chem Lab, Chem Engn & Proc Dev Div, Pune 411008, Maharashtra, India
[2] MES Abasaheb Garware Coll, Dept Chem, Pune 411004, Maharashtra, India
关键词
SELECTIVE HYDROGENATION; ETHYL LEVULINATE; CONVERSION; ESTERS; LIQUID; NANOPARTICLES; REDUCTION; ZEOLITES; SITES; FUELS;
D O I
10.1039/c6ra08637c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A sustainable process of catalytic transfer hydrogenation (CTH) of levulinic acid (LA) to gamma-valerolactone (GVL) was investigated over Ni on various supports (Al2O3, ZnO, MMT and SiO2) in the presence of isopropanol (IPA) as the H-donor. Among these, the montmorillonite (MMT) supported Ni catalyst showed almost complete LA conversion (>99%) and selectivity (>99%) to GVL within 1 h. XRD and XPS results showed that the concentration of the metallic species significantly enhanced (two to four times) in the recovered sample as compared to the freshly prepared Ni/MMT. This was due to the in situ reduction of Ni2+ species present on the catalyst surface, through liberated H-2 under the reaction conditions. The strong acid strength of MMT, evidenced by NH3-TPD and py-IR, facilitated the esterification of LA as well as cyclization to GVL. The conversion-selectivity pattern was found to decrease in the IPA-water mixture while, it remained unchanged in the IPA-acetone mixture. Our catalyst could be efficiently recycled up to five times with consistent CTH activity and selectivity to GVL. The plausible mechanism of LA to GVL conversion involves the formation of a levulinate ester with IPA that favours its simultaneous hydrogenation and cyclization in a spontaneous manner to give GVL and regenerating IPA for sustainability.
引用
收藏
页码:59753 / 59761
页数:9
相关论文
共 50 条
  • [1] Hydrogenation of biomass-derived levulinic acid to γ-valerolactone over copper catalysts supported on ZrO2
    Balla, Putrakumar
    Perupogu, Vijayanand
    Vanama, Pavan Kumar
    Komandur, V. R. Chary
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2016, 91 (03) : 769 - 776
  • [2] Supported copper catalysts for highly efficient hydrogenation of biomass-derived levulinic acid and γ-valerolactone
    Xu, Qing
    Li, Xinglong
    Pan, Tao
    Yu, Chuguo
    Deng, Jin
    Guo, Qingxiang
    Fu, Yao
    GREEN CHEMISTRY, 2016, 18 (05) : 1287 - 1294
  • [3] Catalytic transfer hydrogenation of biomass-derived levulinic acid to γ-valerolactone over Sn/Al-SBA-15 catalysts
    Kumaravel, Sakthivel
    Thiripuranthagan, Sivakumar
    Durai, Mani
    Erusappan, Elangovan
    Vembuli, Thanigaivel
    NEW JOURNAL OF CHEMISTRY, 2020, 44 (20) : 8209 - 8222
  • [4] Synthesis of γ-Valerolactone by Hydrogenation of Biomass-derived Levulinic Acid over Ru/C Catalyst
    Yan, Zhi-pei
    Lin, Lu
    Liu, Shijie
    ENERGY & FUELS, 2009, 23 (08) : 3853 - 3858
  • [5] A sustainable process for the production of γ-valerolactone by hydrogenation of biomass-derived levulinic acid
    Galletti, Anna Maria Raspolli
    Antonetti, Claudia
    De Luise, Valentina
    Martinelli, Marco
    GREEN CHEMISTRY, 2012, 14 (03) : 688 - 694
  • [6] Hydrogenation of Biomass-Derived Levulinic Acid into γ-Valerolactone Catalyzed by Palladium Complexes
    Ortiz-Cervantes, Carmen
    Flores-Alamo, Marcos
    Garcia, Juventino J.
    ACS CATALYSIS, 2015, 5 (03): : 1424 - 1431
  • [7] Synthesis of γ-valerolactone by hydrogenation of levulinic acid over supported nickel catalysts
    Hengst, Konstantin
    Schubert, Martin
    Carvalho, Hudson W. P.
    Lu, Changbo
    Kleist, Wolfgang
    Grunwaldt, Jan-Dierk
    APPLIED CATALYSIS A-GENERAL, 2015, 502 : 18 - 26
  • [8] Highly efficient conversion of biomass-derived levulinic acid into γ-valerolactone over Ni/MgO catalyst
    Lv, Jinkun
    Rong, Zeming
    Wang, Yong
    Xiu, Jinghai
    Wang, Yue
    Qu, Jingping
    RSC ADVANCES, 2015, 5 (88): : 72037 - 72045
  • [9] MOF-derived bimetallic NiCo nanoalloys for the hydrogenation of biomass-derived levulinic acid to γ-valerolactone
    Xu, Hong
    Hu, Di
    Lin, Lu
    Zhang, Man
    Li, Xin
    Zeng, Yongjian
    Amer, Mahmoud
    Luo, Wenhao
    Yan, Kai
    AICHE JOURNAL, 2023, 69 (02)
  • [10] Gas phase hydrogenation of levulinic acid to γ-valerolactone over supported Ni catalysts with formic acid as hydrogen source
    Varkolu, Mohan
    Velpula, Venkateshwarlu
    Burri, David Raju
    Kamaraju, Seetha Rama Rao
    NEW JOURNAL OF CHEMISTRY, 2016, 40 (04) : 3261 - 3267