AN ENTROPIC OPTIMAL TRANSPORT NUMERICAL APPROACH TO THE REFLECTOR PROBLEM

被引:0
|
作者
Benamou, Jean-David [1 ,2 ]
Ijzerman, Wilbert L. [3 ]
Rukhaia, Giorgi [1 ,2 ]
机构
[1] INRIA Paris, MOKAPLAN, Rue Simone Iff, F-75012 Paris, France
[2] Univ Paris 09, CEREMADE, UMR CNRS 7534, Pl Lattre de Tassigny, F-75775 Paris 16, France
[3] Signify Res, High Tech Campus 7, NL-5656 AE Eindhoven, Netherlands
基金
欧盟地平线“2020”;
关键词
Inverse reflector problem; optimal transportation; non-linear optimization;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The point source far field reflector design problem is a classic example of an optimal transport problem with a non-euclidean displacement cost [Wang, 2004] [Glimm and Oliker, 2003]. This work discusses the use of Entropic Optimal Transport and the associated Sinkhorn algorithm [Cuturi, 2013] to solve it numerically. As the reflector modelling is based on the Kantorovich potentials, several questions arise. First, on the convergence of the discrete entropic approximation and here we follow the recent work of [Berman, 2017] and in particular the imposed discretization requirements therein. Secondly, the correction of the bias induced by the Entropic Optimal Transport using the recent notion of Sinkhorn divergences [Ramdas et al., 2017] [Genevay et al., 2018] [Feydy et al., 2018] is shown to be necessary to achieve reasonable results. The paper does not establish any new theoretical result but discusses the necessary mathematical and numerical tools needed to produce and analyse the obtained numerical results. We find that Sinkhorn algorithm may be adapted, at least in simple academic cases, to the resolution of the far field reflector problem.
引用
收藏
页码:311 / 340
页数:30
相关论文
共 50 条
  • [1] Convergent numerical method for the reflector antenna problem via optimal transport on the sphere
    Hamfeldt, Brittany Froese
    Turnquist, Axel G. R.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2021, 38 (11) : 1704 - 1713
  • [2] An optimal mass transport approach to the near-field reflector problem in optical design
    Graf, Tobias
    Oliker, Vladimir I.
    INVERSE PROBLEMS, 2012, 28 (02)
  • [3] ASYMPTOTICS FOR SEMIDISCRETE ENTROPIC OPTIMAL TRANSPORT*
    Altschuler, Jason M.
    Niles-Weed, Jonathan
    Stromme, Austin J.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (02) : 1718 - 1741
  • [4] Displacement smoothness of entropic optimal transport
    Carlier, Guillaume
    Chizat, Lenaic
    Laborde, Maxime
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2024, 30
  • [5] Entropic Approximation of ∞-Optimal Transport Problems
    Brizzi, Camilla
    Carlier, Guillaume
    De Pascale, Luigi
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 90 (01):
  • [6] Entropic optimal transport: convergence of potentials
    Nutz, Marcel
    Wiesel, Johannes
    PROBABILITY THEORY AND RELATED FIELDS, 2022, 184 (1-2) : 401 - 424
  • [7] Entropic Optimal Transport on Random Graphs
    Keriven, Nicolas
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2023, 5 (04): : 1028 - 1050
  • [8] ON THE SAMPLE COMPLEXITY OF ENTROPIC OPTIMAL TRANSPORT
    Igollet, Philippe
    Tromme, Austin j.
    ANNALS OF STATISTICS, 2025, 53 (01): : 61 - 90
  • [9] Entropic optimal transport: convergence of potentials
    Marcel Nutz
    Johannes Wiesel
    Probability Theory and Related Fields, 2022, 184 : 401 - 424
  • [10] Statistical Physics Approach to the Optimal Transport Problem
    Koehl, Patrice
    Delarue, Marc
    Orland, Henri
    PHYSICAL REVIEW LETTERS, 2019, 123 (04)