Geographic Atrophy Segmentation for SD-OCT Images by MFO Algorithm and Affinity Diffusion

被引:0
|
作者
Huang, Yubo [1 ]
Ji, Zexuan [1 ]
Chen, Qiang [1 ]
Niu, Sijie [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Univ Jinan, Sch Informat Sci & Engn, Jinan 250022, Shandong, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
MFO; Geographic atrophy; SD-OCT; Affinity diffusion; Bias field; OPTICAL COHERENCE TOMOGRAPHY; AGE-RELATED MACULOPATHY; MACULAR DEGENERATION; FUNDUS AUTOFLUORESCENCE; PROGRESSION; EYE;
D O I
10.1007/978-3-319-67777-4_42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Age-related macular degeneration (AMD) is a common cause of vision loss among the elderly in developed countries. Geographic atrophy (GA) appears in advanced stages of non-exudative AMD. In this paper, we present a hybrid GA segmentation model for spectral-domain optical coherence tomography (SD-OCT) images. The method first segments the layered structure of the SD-OCT scan data and produces the projection images. Then we construct the histogram of the resulting image into a probability distribution function, and use this function to fit a Gaussian mixed model (GMM) by Moth-flame optimization (MFO) algorithm. To incorporate the globe spatial information to over come the impact of noise, a robust affinity diffusion method is proposed to construct the affinity map. Finally, bias field correction process is employed to remove the intensity inhomogeneity. Two data sets, respectively consisting on 55 SD-OCT scans from twelve eyes in eight patients with GA and 56 SD-OCT scans from 56 eyes in 56 patients with GA, are utilized to quantitatively evaluate the segmentation algorithm. Experimental results demonstrate that the proposed algorithm can achieve high segmentation accuracy.
引用
收藏
页码:473 / 484
页数:12
相关论文
共 50 条
  • [1] Semi-automatic geographic atrophy segmentation for SD-OCT images
    Chen, Qiang
    de Sisternes, Luis
    Leng, Theodore
    Zheng, Luoluo
    Kutzscher, Lauren
    Rubin, Daniel L.
    BIOMEDICAL OPTICS EXPRESS, 2013, 4 (12): : 2729 - 2750
  • [2] Automated and Robust Geographic Atrophy Segmentation for Time Series SD-OCT Images
    Li, Yuchun
    Niu, Sijie
    Ji, Zexuan
    Chen, Qiang
    PATTERN RECOGNITION AND COMPUTER VISION (PRCV 2018), PT I, 2018, 11256 : 249 - 261
  • [3] Geographic atrophy segmentation in SD-OCT images using synthesized fundus autofluorescence imaging
    Wu, Menglin
    Cai, Xinxin
    Chen, Qiang
    Ji, Zexuan
    Niu, Sijie
    Leng, Theodore
    Rubin, Daniel L.
    Park, Hyunjin
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 182
  • [4] Weakly Supervised Segmentation of Geographic Atrophy on SD-OCT scans
    Lachinov, Dmitrii
    Grechenig, Christoph
    Baratsits, Magdalena
    Sacu, Stefan
    Bogunovic, Hrvoje
    Schmidt-Erfurth, Ursula
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2020, 61 (07)
  • [5] Automated Segmentation and Quantification in SD-OCT Images to Predict Future Geographic Atrophy Involvement
    Niu, Sijie
    De Sisternes, Luis
    Chen, Qiang
    Leng, Theodore
    Rubin, Daniel L.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (07)
  • [6] Validated Automatic Segmentation of AMD Pathology Including Drusen and Geographic Atrophy in SD-OCT Images
    Chiu, Stephanie J.
    Izatt, Joseph A.
    O'Connell, Rachelle V.
    Winter, Katrina P.
    Toth, Cynthia A.
    Farsiu, Sina
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2012, 53 (01) : 53 - 61
  • [7] Automated geographic atrophy segmentation with multi-loss for SD-OCT images based on patient independent
    Dong, Jiwen
    Chen, Junting
    Gao, Xizhan
    Xu, Rongbin
    Niu, Sijie
    TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [8] Automated geographic atrophy segmentation for SD-OCT images based on two-stage learning model
    Xu, Rongbin
    Niu, Sijie
    Chen, Qiang
    Ji, Zexuan
    Rubin, Daniel
    Chen, Yuehui
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 105 : 102 - 111
  • [9] Beyond Retinal Layers: A Deep Voting Model for Automated Geographic Atrophy Segmentation in SD-OCT Images
    Ji, Zexuan
    Chen, Qiang
    Niu, Sijie
    Leng, Theodore
    Rubin, Daniel L.
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2018, 7 (01):
  • [10] An integrated time adaptive geographic atrophy prediction model for SD-OCT images
    Zhang, Yuhan
    Zhang, Xiwei
    Ji, Zexuan
    Niu, Sijie
    Leng, Theodore
    Rubin, Daniel L.
    Yuan, Songtao
    Chen, Qiang
    MEDICAL IMAGE ANALYSIS, 2021, 68