Stochastic linear-quadratic control via primal-dual semidefinite programming

被引:7
|
作者
Yao, DD [1 ]
Zhang, SZ
Zhou, XY
机构
[1] Columbia Univ, Dept Ind Engn & Operat Res, New York, NY 10027 USA
[2] Chinese Univ Hong Kong, Dept Syst Engn & Engn Management, Shatin, Hong Kong, Peoples R China
关键词
stochastic linear-quadratic control; semidefinite programining; complementary duality; mean-square stability; generalized Riccati equation;
D O I
10.1137/S0036144503434203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study stochastic linear-quadratic (LQ) optimal control problems over an infinite time horizon, allowing the cost matrices to be indefinite. We develop a systematic approach based on semidefinite programming (SDP). A central issue is the stability of the feedback control. We show that this can be effectively examined through the complementary duality of the SDP. Furthermore, we establish several implication relations among the SDP complementary duality, the (generalized) Riccati equation, and the optimality of the LQ control problem. Based on these relations, we propose a numerical procedure that provides a thorough treatment of the LQ control problem via primal-dual SDP: it identifies a stabilizing feedback control that is optimal or determines that the problem possesses no optimal solution. For the latter case, we develop an E-approximation scheme that is asymptotically optimal.
引用
收藏
页码:87 / 111
页数:25
相关论文
共 50 条
  • [1] A primal-dual semidefinite programming approach to linear quadratic control
    Yao, DD
    Zhang, SZ
    Zhou, XY
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (09) : 1442 - 1447
  • [2] Stochastic linear-quadratic control via semidefinite programming
    Yao, DD
    Zhang, SZ
    Zhou, XY
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2001, 40 (03) : 801 - 823
  • [3] PRIMAL-DUAL PROJECTED GRADIENT ALGORITHMS FOR EXTENDED LINEAR-QUADRATIC PROGRAMMING
    Zhu, Ciyou
    Rockafellar, R. T.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1993, 3 (04) : 751 - 783
  • [5] Primal-dual Newton method for a linear problem of semidefinite programming
    Zhadan, V. G.
    Orlov, A. A.
    [J]. TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2013, 19 (02): : 157 - 169
  • [6] A feasible primal-dual interior point method for linear semidefinite programming
    Touil, Imene
    Benterki, Djamel
    Yassine, Adnan
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 312 : 216 - 230
  • [7] Primal-dual method for solving a linear-quadratic multi-input optimal control problem
    Khimoum, Noureddine
    Bibi, Mohand Ouamer
    [J]. OPTIMIZATION LETTERS, 2020, 14 (03) : 653 - 669
  • [8] Primal-dual method for solving a linear-quadratic multi-input optimal control problem
    Noureddine Khimoum
    Mohand Ouamer Bibi
    [J]. Optimization Letters, 2020, 14 : 653 - 669
  • [9] Primal-dual methods for linear programming
    Gill, PE
    Murray, W
    Ponceleon, DB
    Saunders, MA
    [J]. MATHEMATICAL PROGRAMMING, 1995, 70 (03) : 251 - 277
  • [10] An interior point method with a primal-dual quadratic barrier penalty function for nonlinear semidefinite programming
    Kato, Atsushi
    Yabe, Hiroshi
    Yamashita, Hiroshi
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 275 : 148 - 161