Multiscale stiffness characterisation of both healthy and osteoporotic bone tissue using subject-specific data

被引:3
|
作者
Prada, Daniel M. [1 ]
Galvis, Andres F. [2 ]
Miller, Johnathan [3 ]
Foster, Jamie M. [2 ]
Zavaglia, Cecilia [1 ]
机构
[1] Univ Estadual Campinas, Sch Mech Engn, BR-13083860 Campinas, Brazil
[2] Univ Portsmouth, Sch Math & Phys, Portsmouth PO1 2UP, England
[3] Univ Valle, Fac Hlth, Cali 760043, Colombia
基金
巴西圣保罗研究基金会; 英国工程与自然科学研究理事会;
关键词
Bone multiscale; Bone elastic properties; Bone homogenisation; Anisotropic bone; Osteoporotic bone properties; MINERALIZED COLLAGEN FIBRILS; MECHANICAL-PROPERTIES; CORTICAL BONE; ELASTIC PROPERTIES; MAJOR DETERMINANT; DENSITY; POROSITY; MODEL; ORIENTATION; CONSTANTS;
D O I
10.1016/j.jmbbm.2022.105431
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Severe bone fractures are often treated by appending internal fixations. In unhealthy or osteoporotic patients, post-implantation bone fractures can occur due to external impact (e.g. from a fall), day-to-day activities in highly-osteoporotic cases and mismatches in the stiffness of bone and the implant's biomaterial, since this causes stress concentrations. One approach to alleviating this problem is to use biomaterials that closely mimic the effective stiffness of real bone, thereby more seamlessly integrating the fixation. This requires to know the properties target (bone properties) and therefore, it highlights the relevance of the evaluation of the bone's mechanical properties which is impractical via direct measurement. This work presents a methodology (multistage homogenisation) for predicting the anisotropic stiffness of bone given the porosity and mineral fraction, both of which are more readily obtained than the mechanical properties themselves. Unlike previous work we: (i) account for finger-like morphology of the mineral phase at the nanoscale; (ii) use microscopy data to model the osteon geometry and its curvilinear anisotropy at the microscale, and (iii) use data to define the trabecular (microCT) and cortical (microscopy) bone geometries at the mesoscale. The predicts have been shown to agree favourably with experimental data in the literature as well as previous modelling works. The results are summarised in a database containing anisotropic stiffness tensors applicable to a broad range of degrees of bone health (e.g. mineral fractions and mesoscale porosities); thus, this work is a contribution towards being able to design more robust patient-specific bone implants in practice.
引用
收藏
页数:15
相关论文
共 28 条
  • [1] Subject-specific modeling of the scapula bone tissue adaptation
    Campoli, Gianni
    Weinans, Harrie
    van der Helm, Frans
    Zadpoor, Amir A.
    [J]. JOURNAL OF BIOMECHANICS, 2013, 46 (14) : 2434 - 2441
  • [2] MULTISCALE MODELING OF AEROSOL DOSIMETRY: VALIDATION WITH SUBJECT-SPECIFIC DEPOSITION DATA
    Darquenne, Chantal
    Price, Owen
    Asgharian, Bahman
    Singh, Rajesh K.
    Colby, Sean
    Yugulis, Kevin
    Corley, Richard A.
    Kuprat, Andrew P.
    [J]. JOURNAL OF AEROSOL MEDICINE AND PULMONARY DRUG DELIVERY, 2023, 36 (06) : A18 - A18
  • [3] Automated bidirectional coupling of multiscale models of aerosol dosimetry: Validation with subject-specific deposition data
    Kuprat, A. P.
    Price, O.
    Asgharian, B.
    Singh, R. K.
    Colby, S.
    Yugulis, K.
    Corley, R. A.
    Darquenne, C.
    [J]. JOURNAL OF AEROSOL SCIENCE, 2023, 174
  • [4] Reconstruction of subject-specific human femoral bone model with cortical porosity data using macro-CT
    Pandithevan, Ponnusamy
    Kumar, Gurunathan Saravana
    [J]. VIRTUAL AND PHYSICAL PROTOTYPING, 2009, 4 (03) : 115 - 129
  • [5] Subject-Specific Brain Activity Analysis in fMRI Data Using Merge Trees
    Rasheed, Farhan
    Jonsson, Daniel
    Nilsson, Emma
    Bin Masood, Talha
    Hotz, Ingrid
    [J]. 2022 IEEE WORKSHOP ON TOPOLOGICAL DATA ANALYSIS AND VISUALIZATION (TOPOINVIS 2022), 2022, : 113 - 123
  • [6] Quantification of soft tissue artifacts using CT registration and subject-specific multibody modeling
    Wang, Yanbing
    Guo, Jianqiao
    Tang, Hao
    Li, Xinxin
    Guo, Shaoyi
    Tian, Qiang
    [J]. JOURNAL OF BIOMECHANICS, 2024, 162
  • [7] Resolving flow and mass transport in a healthy subject-specific aorta using large eddy simulation
    Jonas Lantz
    Matts Karlsson
    [J]. Journal of Cardiovascular Magnetic Resonance, 14 (Suppl 1)
  • [8] Subject-specific Mechanical Properties of Trabecular Bone Using a Low-dose Imaging.
    Sapin, E.
    Briot, K.
    Kolta, S.
    Roux, C.
    Skalli, W.
    Mitton, D.
    [J]. JOURNAL OF BONE AND MINERAL RESEARCH, 2008, 23 : S363 - S363
  • [9] Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: Effect of selected density-modulus relationship
    Nazemi, S. Majid
    Amini, Morteza
    Kontulainen, Saija A.
    Milner, Jaques S.
    Holdsworth, David W.
    Masri, Bassam A.
    Wilson, David R.
    Johnston, James D.
    [J]. CLINICAL BIOMECHANICS, 2015, 30 (07) : 703 - 712
  • [10] Fully Automated Renal Tissue Volumetry in MR Volume Data Using Prior-Shape-Based Segmentation in Subject-Specific Probability Maps
    Gloger, Oliver
    Toennies, Klaus
    Laqua, Rene
    Voelzke, Henry
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2015, 62 (10) : 2338 - 2351