On the concircular curvature tensor of a contact metric manifold

被引:0
|
作者
Blair, DE [1 ]
Kim, JS
Tripathi, MM
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Yosu Natl Univ, Dept Math & Math Informat, Yosu 550749, South Korea
[3] Univ Lucknow, Dept Math & Astron, Lucknow 226007, Uttar Pradesh, India
关键词
contact metric manifold; N(kappa)-contact metric manifold; (kappa; mu)-manifold; Sasakian manifold; concircular curvature tenser; concircularly symmetric; recurrent concircular curvature tensor;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify N(kappa)-contact metric manifolds which satisfy Z(xi, X) center dot Z = 0, Z(xi, X) center dot R = 0 or R(xi, X) center dot Z = 0.
引用
收藏
页码:883 / 892
页数:10
相关论文
共 50 条
  • [1] Certain Results on (k,μ)-Contact Metric Manifold endowed with Concircular Curvature Tensor
    Kumar, R. T. Naveen
    Reddy, P. Siva Kota
    Venkatesha
    Sangeetha, M.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2023, 14 (01): : 215 - 225
  • [2] On the contact conformal curvature tensor of a contact metric manifold
    Kim, Jeong-Sik
    Choi, Jaedong
    Ozgur, Cihan
    Tripathi, Mukut Mani
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2006, 37 (04): : 199 - 207
  • [3] Concircular Curvature Tensor of a Semi-Symmetric Metric Connection in a Kenmotsu Manifold
    Barman, Ajit
    THAI JOURNAL OF MATHEMATICS, 2015, 13 (01): : 245 - 257
  • [4] ON ENDO CURVATURE TENSOR OF A CONTACT METRIC MANIFOLD
    Dwivedi, Mohit Kumar
    Jun, Jae-Bok
    Tripathi, Mukut Mani
    TAMKANG JOURNAL OF MATHEMATICS, 2008, 39 (02): : 177 - 185
  • [5] ON THE CONHARMONIC CURVATURE TENSOR OF A N(K)-CONTACT METRIC MANIFOLD
    Tripathi, Gajendra Nath
    Rastogi, Rati
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2019, 18 (1-2): : 45 - 55
  • [6] ON THE CONCIRCULAR CURVATURE OF A (κ, μ, ν)-MANIFOLD
    Gouli-Andreou, Florence
    Moutafi, Evaggelia
    PACIFIC JOURNAL OF MATHEMATICS, 2014, 269 (01) : 113 - 132
  • [7] On Concircular Curvature Tensor with respect to the Semi-symmetric Non-metric Connection in a Kenmotsu Manifold
    Haseeb, Abdul
    KYUNGPOOK MATHEMATICAL JOURNAL, 2016, 56 (03): : 951 - 964
  • [8] CONCIRCULAR CURVATURE TENSOR ON A P-SASAKIAN MANIFOLD ADMITTING A QUARTER-SYMMETRIC METRIC CONNECTION
    Barman, A.
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2018, 42 (02): : 275 - 285
  • [9] ON THE QUASI-CONFORMAL CURVATURE TENSOR OF A (k, μ)-CONTACT METRIC MANIFOLD
    De, U. C.
    Sarkar, Avijit
    MATHEMATICAL REPORTS, 2012, 14 (02): : 115 - 129
  • [10] Geometric interpretation of the Wagner curvature tensor in the case of a manifold with contact metric structure
    S. V. Galaev
    Siberian Mathematical Journal, 2016, 57 : 498 - 504