A prime geodesic theorem for SL4

被引:3
|
作者
Deitmar, Anton [1 ]
Pavey, Mark [1 ]
机构
[1] Univ Tubingen, Dept Math, D-72076 Tubingen, Germany
关键词
prime geodesic theorem; trace formula; Ruelle zeta function;
D O I
10.1007/s10455-007-9078-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A prime geodesic theorem is derived for rank-one geodesics in quotients of SL4. This has applications in class number asymptotics for quartic fields. For these applications it is necessary to prove a more general statement than in the literature: several regularity conditions have to be abandoned. As a consequence, the analytical difficulties multiply. The final result is obtained by a sandwiching argument from infinitely many independent asymptotics.
引用
收藏
页码:161 / 205
页数:45
相关论文
共 50 条
  • [1] On the prime geodesic theorem for SL4
    Gušić D.
    International Journal of Circuits, Systems and Signal Processing, 2020, 14 : 42 - 48
  • [2] A prime geodesic theorem for SL4
    Anton Deitmar
    Mark Pavey
    Annals of Global Analysis and Geometry, 2008, 33 : 161 - 205
  • [3] A prime geodesic theorem for SL3(Z)
    Deitmar, Anton
    Spilioti, Polyxeni
    Gon, Yasuro
    FORUM MATHEMATICUM, 2019, 31 (05) : 1179 - 1201
  • [4] PRIME GEODESIC THEOREM
    IWANIEC, H
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1984, 349 : 136 - 159
  • [5] The prime geodesic theorem
    Soundararajan, K.
    Young, Matthew P.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 676 : 105 - 120
  • [6] Refinement of prime geodesic theorem
    Koyama, Shin-ya
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2016, 92 (07) : 77 - 81
  • [7] Invariants and orbits of the standard (SL4(C) x SL4(C) x SL2(C))-module
    Pervushin, DD
    IZVESTIYA MATHEMATICS, 2000, 64 (05) : 1003 - 1015
  • [8] Cohomology of congruence subgroups of SL4(Z)
    Ash, A
    Gunnells, PE
    McConnell, M
    JOURNAL OF NUMBER THEORY, 2002, 94 (01) : 181 - 212
  • [9] Error term in prime geodesic theorem
    Nakasuji, Maki
    ANALYTIC AND PROBABILISTIC METHODS IN NUMBER THEORY, 2002, : 228 - 241
  • [10] Mean square in the prime geodesic theorem
    Cherubini, Giacomo
    Guerreiro, Joao
    ALGEBRA & NUMBER THEORY, 2018, 12 (03) : 571 - 597