TrSeg: Transformer for semantic segmentation

被引:53
|
作者
Jin, Youngsaeng [1 ]
Han, David [2 ]
Ko, Hanseok [1 ]
机构
[1] Korea Unvers, Sch Elect Engn, 145 Anam Ro, Seoul 02841, South Korea
[2] Drexel Univ, Dept Elect & Comp Engn, 3141 Chestnut St, Philadelphia, PA 19104 USA
关键词
Semantic segmentation; Scene understanding; Transformer; Multi-scale contextual information;
D O I
10.1016/j.patrec.2021.04.024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent effort s in semantic segment ation using deep learning frameworks have made notable advances. However, capturing the existence of objects in an image at multiple scales still remains a challenge. In this paper, we address the semantic segmentation task based on transformer architecture. Unlike exist-ing methods that capture multi-scale contextual information through infusing every single-scale piece of information from parallel paths, we propose a novel semantic segmentation network incorporating a transformer (TrSeg) to adaptively capture multi-scale information with the dependencies on original con-textual information. Given the original contextual information as keys and values, the multi-scale con-textual information from the multi-scale pooling module as queries is transformed by the transformer decoder. The experimental results show that TrSeg outperforms the other methods of capturing multi-scale information by large margins. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:29 / 35
页数:7
相关论文
共 50 条
  • [1] Segmenter: Transformer for Semantic Segmentation
    Strudel, Robin
    Garcia, Ricardo
    Laptev, Ivan
    Schmid, Cordelia
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 7242 - 7252
  • [2] Transformer Scale Gate for Semantic Segmentation
    Shi, Hengcan
    Hayat, Munawar
    Cai, Jianfei
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 3051 - 3060
  • [3] TransRVNet: LiDAR Semantic Segmentation With Transformer
    Cheng, Hui-Xian
    Han, Xian-Feng
    Xiao, Guo-Qiang
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (06) : 5895 - 5907
  • [4] Pyramid Fusion Transformer for Semantic Segmentation
    Qin, Zipeng
    Liu, Jianbo
    Zhang, Xiaolin
    Tian, Maoqing
    Zhou, Aojun
    Yi, Shuai
    Li, Hongsheng
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9630 - 9643
  • [5] SSformer: A Lightweight Transformer for Semantic Segmentation
    Shi, Wentao
    Xu, Jing
    Gao, Pan
    [J]. 2022 IEEE 24TH INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2022,
  • [6] Scene sketch semantic segmentation with hierarchical Transformer
    Yang, Jie
    Ke, Aihua
    Yu, Yaoxiang
    Cai, Bo
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 280
  • [7] Graph Structure Guided Transformer for Semantic Segmentation
    Qian, Luyang
    Zhang, Canlong
    Li, Zhixin
    Wang, Zhiwen
    [J]. 2022 IEEE 34TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, ICTAI, 2022, : 915 - 922
  • [8] MMSFormer: Multimodal Transformer for Material and Semantic Segmentation
    Reza, Md Kaykobad
    Prater-Bennette, Ashley
    Asif, M. Salman
    [J]. IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2024, 5 : 599 - 610
  • [9] A Unified Efficient Pyramid Transformer for Semantic Segmentation
    Zhu, Fangrui
    Zhu, Yi
    Zhang, Li
    Wu, Chongruo
    Fu, Yanwei
    Li, Mu
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 2667 - 2677
  • [10] CoT: Contourlet Transformer for Hierarchical Semantic Segmentation
    Shao, Yilin
    Sun, Long
    Jiao, Licheng
    Liu, Xu
    Liu, Fang
    Li, Lingling
    Yang, Shuyuan
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, : 1 - 15