On reaction processes with a logarithmic-diffusion

被引:2
|
作者
Rosenau, Philip [1 ]
机构
[1] Tel Aviv Univ, Sch Math Sci, IL-69978 Tel Aviv, Israel
关键词
Fast diffusion; Quadratic and bi-stable reactions; Explicit solutions; Attractors; Solution's extinction;
D O I
10.1016/j.physleta.2016.10.056
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study formation of patterns in reaction processes with a logarithmic-diffusion: u(t) = (In u)(xx) + R(u). For the generic R = u(1- u) case the problem of travelling waves, TW, is mapped into a linear one with the propagation speed lambda selected by a boundary condition, b.c. at the far away upstream. Dirichlet b.c. relaxes the process into a steady state, whereas convective b.c.u(x) + hu = 0, leads the system into a heating (cooling) TW for h < 1 (1 < h) or, if h =1, into an equilibrium. We derive explicit solutions of symmetrically expanding waves and of formations which collapse in a finite time. Both are shown to be attractors of classes of initial excitations. For a bi-stable reaction R =-u(alpha- u)(1- u) we show that for a < 1/3 the system may evolve into a TW, an equilibrium, an expanding formation or to collapse. The 1/3 < alpha regime admits either a cooling TW or a collapse. Few other transport processes are outlined in the appendix. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:94 / 101
页数:8
相关论文
共 50 条
  • [1] Quenching for a reaction-diffusion system with logarithmic singularity
    Mu, Chunlai
    Zhou, Shouming
    Liu, Dengming
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) : 5599 - 5605
  • [2] On reaction processes with saturating diffusion
    Kurganov, A
    Rosenau, P
    NONLINEARITY, 2006, 19 (01) : 171 - 193
  • [3] UNIQUENESS OF REACTION DIFFUSION PROCESSES
    陈木法
    Chinese Science Bulletin, 1991, (12) : 969 - 973
  • [4] Reaction-diffusion processes
    CHEN Mufa Beijing Normal University Beijing 100875
    Chinese Science Bulletin, 1998, (17) : 1409 - 1420
  • [5] Reaction-diffusion processes
    Chen, M
    CHINESE SCIENCE BULLETIN, 1998, 43 (17): : 1409 - 1420
  • [6] Reaction-diffusion processes with nonlinear diffusion
    Krapivsky, P. L.
    PHYSICAL REVIEW E, 2012, 86 (04)
  • [7] SPREADING AND EXTINCTION OF SOLUTIONS TO THE LOGARITHMIC DIFFUSION EQUATION WITH A LOGISTIC REACTION
    Monobe, Harunori
    Shimojo, Masahiko
    Yanagida, Eiji
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (03) : 2261 - 2287
  • [8] Power Laws and Logarithmic Oscillations in Diffusion Processes on Discrete Ultrametric Spaces
    Bikulov, A. Kh.
    Zubarev, A. P.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2024, 16 (04) : 327 - 350
  • [9] Diffusion?Reaction processes on a backbone structure
    Marin, D.
    Guilherme, L. M. S.
    Lenzi, M. K.
    da Silva, L. R.
    Lenzi, E. K.
    Sandev, T.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 85
  • [10] Stochastic Analysis of Reaction–Diffusion Processes
    Jifeng Hu
    Hye-Won Kang
    Hans G. Othmer
    Bulletin of Mathematical Biology, 2014, 76 : 854 - 894