Experimental validation of atomic force microscopy-based cell elasticity measurements

被引:144
|
作者
Harris, Andrew R. [1 ,2 ,3 ]
Charras, G. T. [1 ,4 ]
机构
[1] UCL, London Ctr Nanotechnol, London WC1H 0AH, England
[2] UCL, Dept Phys, London WC1H 0AH, England
[3] UCL, Engn Doctorate Program, London WC1H 0AH, England
[4] UCL, Dept Cell & Dev Biol, London WC1H 0AH, England
基金
英国工程与自然科学研究理事会;
关键词
LIVING CELLS; INDENTATION; RIGIDITY; SOFT;
D O I
10.1088/0957-4484/22/34/345102
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Atomic force microscopy (AFM) is widely used for measuring the elasticity of living cells yielding values ranging from 100 Pa to 100 kPa, much larger than those obtained using bead-tracking microrheology or micropipette aspiration (100-500 Pa). AFM elasticity measurements appear dependent on tip geometry with pyramidal tips yielding elasticities 2-3 fold larger than spherical tips, an effect generally attributed to the larger contact area of spherical tips. In AFM elasticity measurements, experimental force-indentation curves are analyzed using contact mechanics models that infer the tip-cell contact area from the tip geometry and indentation depth. The validity of these assumptions has never been verified. Here we utilize combined AFM-confocal microscopy of epithelial cells expressing a GFP-tagged membrane marker to directly characterize the indentation geometry and measure the indentation depth. Comparison with data derived from AFM force-indentation curves showed that the experimentally measured contact area for spherical tips agrees well with predicted values, whereas for pyramidal tips, the contact area can be grossly underestimated at forces larger than similar to 0.2 nN leading to a greater than two-fold overestimation of elasticity. These data suggest that a re-examination of absolute cellular elasticities reported in the literature may be necessary and we suggest guidelines for avoiding elasticity measurement artefacts introduced by extraneous cantilever-cell contact.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Atomic force microscopy-based force measurements on animal cells and tissues
    Gautier, Helene O. B.
    Thompson, Amelia J.
    Achouri, Sarra
    Koser, David E.
    Holtzmann, Kathrin
    Moeendarbary, Emad
    Franze, Kristian
    [J]. BIOPHYSICAL METHODS IN CELL BIOLOGY, 2015, 125 : 211 - 235
  • [2] Atomic force microscopy-based single cell mechanics
    Lulevich, Valentin
    Zink, Tiffany
    Chen, Huan-Yuan
    Liu, Fu-tong
    Liu, Gang-yu
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [3] Atomic force microscopy-based mechanobiology
    Krieg, Michael
    Flaschner, Gotthold
    Alsteens, David
    Gaub, Benjamin M.
    Roos, Wouter H.
    Wuite, Gijs J. L.
    Gaub, Hermann E.
    Gerber, Christoph
    Dufrene, Yves F.
    Mueller, Daniel J.
    [J]. NATURE REVIEWS PHYSICS, 2019, 1 (01) : 41 - 57
  • [4] Atomic force microscopy-based mechanobiology
    Michael Krieg
    Gotthold Fläschner
    David Alsteens
    Benjamin M. Gaub
    Wouter H. Roos
    Gijs J. L. Wuite
    Hermann E. Gaub
    Christoph Gerber
    Yves F. Dufrêne
    Daniel J. Müller
    [J]. Nature Reviews Physics, 2019, 1 : 41 - 57
  • [5] Multiscale modeling and experimental validation for nanochannel depth control in atomic force microscopy-based nanofabrication
    Ren, Jiaqi
    Liu, Pinkuan
    Zhu, Xiaobo
    Zhang, Fan
    Chen, Guozhen
    [J]. JOURNAL OF APPLIED PHYSICS, 2014, 116 (07)
  • [6] Biomechanics Model to Characterize Atomic Force Microscopy-Based Virus-Host Cell Adhesion Measurements
    Wang, Jiajun
    Ziarnik, Matthew
    Zhang, X. Frank
    Jagota, Anand
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2024,
  • [7] Atomic force microscopy-based characterization and design of biointerfaces
    Alsteens, David
    Gaub, Hermann E.
    Newton, Richard
    Pfreundschuh, Moritz
    Gerber, Christoph
    Muller, Daniel J.
    [J]. NATURE REVIEWS MATERIALS, 2017, 2 (05):
  • [8] Atomic force microscopy-based characterization and design of biointerfaces
    David Alsteens
    Hermann E. Gaub
    Richard Newton
    Moritz Pfreundschuh
    Christoph Gerber
    Daniel J. Müller
    [J]. Nature Reviews Materials, 2
  • [9] Atomic force microscopy-based bioanalysis for the study of disease
    Morton, Kirstin C.
    Baker, Lane A.
    [J]. ANALYTICAL METHODS, 2014, 6 (14) : 4932 - 4955
  • [10] Cell mechanics using atomic force microscopy-based single-cell compression
    Lulevich, Valentin
    Zink, Tiffany
    Chen, Huan-Yuan
    Liu, Fu-Tong
    Liu, Gang-yu
    [J]. LANGMUIR, 2006, 22 (19) : 8151 - 8155