Data-Driven Hybrid Neural Fuzzy Network and ARX Modeling Approach to Practical Industrial Process Identification

被引:21
|
作者
Li, Feng [1 ]
Zheng, Tian [1 ]
He, Naibao [1 ]
Cao, Qingfeng [1 ,2 ]
机构
[1] Jiangsu Univ Technol, Coll Elect & Informat Engn, Changzhou 213001, Jiangsu, Peoples R China
[2] Yangzhou Univ, Coll Elect Energy & Power Engn, Yangzhou 225127, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
ALGORITHM;
D O I
10.1109/JAS.2022.105821
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
22
引用
收藏
页码:1702 / 1705
页数:4
相关论文
共 50 条
  • [1] Data-Driven Hybrid Neural Fuzzy Network and ARX Modeling Approach to Practical Industrial Process Identification
    Feng Li
    Tian Zheng
    Naibao He
    Qingfeng Cao
    IEEE/CAA Journal of Automatica Sinica, 2022, (09) : 1702 - 1705
  • [2] A Data-Driven Hybrid ARX and Markov Chain Modeling Approach to Process Identification With Time-Varying Time Delays
    Zhao, Yujia
    Fatehi, Alireza
    Huang, Biao
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (05) : 4226 - 4236
  • [3] A Fuzzy Neural Network System Modeling Method Based on Data-driven
    Shao, Keyong
    Fan, Xin
    Han, Shengmei
    Li, Shaofeng
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 624 - +
  • [4] Knowledge and data-driven hybrid system for modeling fuzzy wastewater treatment process
    Cheng, Xuhong
    Guo, Zhiwei
    Shen, Yu
    Yu, Keping
    Gao, Xu
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (10): : 7185 - 7206
  • [5] Knowledge and data-driven hybrid system for modeling fuzzy wastewater treatment process
    Xuhong Cheng
    Zhiwei Guo
    Yu Shen
    Keping Yu
    Xu Gao
    Neural Computing and Applications, 2023, 35 : 7185 - 7206
  • [6] Geometric constructive network with block increments for lightweight data-driven industrial process modeling
    Nan, Jing
    Dai, Wei
    Zhang, Haijun
    JOURNAL OF PROCESS CONTROL, 2024, 134
  • [7] Data-driven Approach to Support Experts in the Identification of Operational States in Industrial Process Plants
    Trunzer, Emanuel
    Wu, Chengyuan
    Guo, Kaiwen
    Vermum, Christian
    Vogel-Heuser, Birgit
    IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 3096 - 3101
  • [8] Identification of a process with control valve stiction using a fuzzy system: A data-driven approach
    Daneshwar, M. A.
    Noh, Norlaili Mohd
    JOURNAL OF PROCESS CONTROL, 2014, 24 (04) : 249 - 260
  • [9] Hybrid fuzzy neural network control for complex industrial process
    Yang, Qingyu
    Ju, Lincang
    Ge, Sibo
    Shi, Ren
    Cai, Yuanli
    INTELLIGENT CONTROL AND AUTOMATION, 2006, 344 : 533 - 538
  • [10] Efficient data-driven modeling with fuzzy relational rule network
    Gaweda, AE
    Zurada, JM
    Aronhime, PB
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, 2002, : 174 - 178