Non-degeneracy study of the 8-tetrahedra longest-edge partition

被引:12
|
作者
Plaza, A [1 ]
Padrón, MA
Suárez, JP
机构
[1] Univ Las Palmas Gran Canaria, Dept Math, Las Palmas Gran Canaria, Spain
[2] Univ Las Palmas Gran Canaria, Dept Civil Engn, Las Palmas Gran Canaria 35017, Spain
[3] Univ Las Palmas Gran Canaria, Dept Graph Engn, Las Palmas Gran Canaria 35017, Spain
关键词
mesh quality; degeneracy; 8-tetrahedra longest-edge partition;
D O I
10.1016/j.apnum.2004.12.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we show empirical evidence on the non-degeneracy property of the tetrahedral meshes obtained by iterative application of the 8-tetrahedra longest-edge (8T-LE) partition. The 8T-LE partition of an initial tetrahedron t yields an infinite sequence of tetrahedral meshes tau(1) = {t}, tau(2) = {t(i)(2)}, tau(3) = {t(i)(3)},.... We give numerical experiments showing that for a standard shape measure introduced by Liu and Joe (eta), the non-degeneracy convergence to a fixed positive value is guaranteed, that is, for any tetrahedron t(i)(n) in tau(n), n >= 1, eta(t(i)(n)) >= c eta(t) where c is a positive constant independent of i and n. Based on our experiments, estimates of c are provided. (c) 2005 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:458 / 472
页数:15
相关论文
共 13 条
  • [1] The 8-tetrahedra longest-edge partition of right-type tetrahedra
    Plaza, A
    Padrón, MA
    Suárez, JP
    Falcón, S
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2004, 41 (03) : 253 - 265
  • [2] On the non-degeneracy property of the longest-edge trisection of triangles
    Plaza, Angel
    Falcon, Sergio
    Suarez, Jose P.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (03) : 862 - 869
  • [3] The eight-tetrahedra longest-edge partition and Kuhn triangulations
    Plaza, Angel
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (03) : 427 - 433
  • [4] Proving the non-degeneracy of the longest-edge trisection by a space of triangular shapes with hyperbolic metric
    Perdomo, Francisco
    Plaza, Angel
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2013, 221 : 424 - 432
  • [5] Local refinement based on the 7-triangle longest-edge partition
    Plaza, Angel
    Marquez, Alberto
    Moreno-Gonzalez, Auxiliadora
    Suarez, Jose P.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (08) : 2444 - 2457
  • [6] Stability of the 8-tetrahedra shortest-interior-edge partitioning method
    Tim Kröger
    Tobias Preusser
    [J]. Numerische Mathematik, 2008, 109 : 435 - 457
  • [7] Similarity Classes in the Eight-Tetrahedron Longest-Edge Partition of a Regular Tetrahedron
    Padron, Miguel A.
    Plaza, Angel
    Suarez, Jose Pablo
    [J]. MATHEMATICS, 2023, 11 (21)
  • [8] Stability of the 8-tetrahedra shortest-interior-edge partitioning method
    Kroeger, Tim
    Preusser, Tobias
    [J]. NUMERISCHE MATHEMATIK, 2008, 109 (03) : 435 - 457
  • [9] Study on the Average Size of the Longest-Edge Propagation Path for Triangulations
    Vilca Huayta, Oliver-Amadeo
    Rivara, Maria-Cecilia
    [J]. PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 1: GRAPP, 2020, : 368 - 375
  • [10] Mesh quality improvement and other properties in the four-triangles longest-edge partition
    Plaza, A
    Suárez, JP
    Padrón, MA
    Falcón, S
    Amieiro, D
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2004, 21 (04) : 353 - 369