Parameter selection for variational pan-sharpening by using evolutionary algorithm

被引:3
|
作者
Xiao, Yang [1 ]
Fang, Faming [1 ]
Zhang, Qian [1 ]
Zhou, Aimin [1 ]
Zhang, Guixu [1 ]
机构
[1] E China Normal Univ, Dept Comp Sci, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
IMAGE FUSION; WAVELET TRANSFORM; RESOLUTION;
D O I
10.1080/2150704X.2015.1041170
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Pan-sharpening is a technique that generates a high spatial resolution multi-spectral image making use of both the spectral information contained in a low spatial resolution multi-spectral image and the spatial information contained in a high spatial resolution panchromatic image. The pan-sharpening method usually contains some parameters. They are usually problem dependent and need to be set properly. In this article, we propose a variational method for pan-sharpening and use an evolutionary algorithm (EA) to choose the optimal parameters automatically. In our method, two quality measurements are combined to form an optimization objective function of the EA, and the parameters are encoded as an individual vector in the EA. The optimal parameters are generated by optimizing the objective function of the EA. The new method is compared with some other variational methods using QuickBird data. We also applied the selected parameters to different images to discuss the applicable scope. The experimental results show that our method can generate a high-quality fused image, and the same parameters' values can be used for similar images.
引用
收藏
页码:458 / 467
页数:10
相关论文
共 50 条
  • [1] A Variational Approach for Pan-Sharpening
    Fang, Faming
    Li, Fang
    Shen, Chaomin
    Zhang, Guixu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (07) : 2822 - 2834
  • [2] A variational pan-sharpening algorithm to enhance the spectral and spatial details
    Gogineni, Rajesh
    Chaturvedi, Ashvini
    Sagar, Daya B. S.
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2021, 12 (03) : 242 - 264
  • [3] A NEW VARIATIONAL METHOD FOR PAN-SHARPENING
    Liu, Pengfei
    Xiao, Liang
    Tang, Songze
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 597 - 600
  • [4] FRACTIONAL ORDER VARIATIONAL PAN-SHARPENING
    Liu, Pengfei
    Xiao, Liang
    Tang, Songze
    Sun, Le
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2602 - 2605
  • [5] Pan-sharpening: a fast variational fusion approach
    Zhou ZeMing
    Li YuanXiang
    Shi HanQing
    Ma Ning
    Shen Ji
    SCIENCE CHINA-INFORMATION SCIENCES, 2012, 55 (03) : 615 - 625
  • [6] A Fast Variational Fusion Approach for Pan-Sharpening
    Zhou, Ze-ming
    Li, Yuan-xiang
    Shi, Han-qing
    Ma, Ning
    He, Chun
    Zhang, Peng
    2010 IEEE 10TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS (ICSP2010), VOLS I-III, 2010, : 1110 - +
  • [7] A Variational Pan-Sharpening with Local Gradient Constraints
    Fu, Xueyang
    Lin, Zihuang
    Huang, Yue
    Ding, Xinghao
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 10257 - 10266
  • [8] Pan-sharpening:a fast variational fusion approach
    ZHOU ZeMing1
    2School of Aeronautics and Astronautics
    Science China(Information Sciences), 2012, 55 (03) : 615 - 625
  • [9] Pan-sharpening: a fast variational fusion approach
    ZeMing Zhou
    YuanXiang Li
    HanQing Shi
    Ning Ma
    Ji Shen
    Science China Information Sciences, 2012, 55 : 615 - 625
  • [10] Pan-sharpening using induction
    Khan, Muhammad Murtaza
    Chanussot, Jocelyn
    Montanvert, Annick
    Condat, Laurent
    IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 314 - +