Foam-like, 3-dimension mesoporous N-doped carbon-assembling TiO2 nanoparticles (P25) as high-performance anode material for lithium-ion batteries

被引:61
|
作者
Yuan, Y. F. [1 ]
Chen, F. [1 ]
Yin, S. M. [1 ]
Wang, L. N. [2 ]
Zhu, M. [1 ]
Yang, J. L. [1 ]
Wu, Y. C. [1 ]
Guo, S. Y. [1 ]
机构
[1] Zhejiang Sci Tech Univ, Coll Machinery & Automat, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Sci Tech Univ, Coll Mat & Text, Minist Educ, Key Lab Adv Text Mat & Mfg Technol, Hangzhou 310018, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
TiO2; P25; Microstructure; Lithium-ion batteries; ENHANCED ELECTROCHEMICAL PERFORMANCE; REDUCED GRAPHENE OXIDE; ANATASE TIO2; STORAGE PERFORMANCE; FACILE SYNTHESIS; HOLLOW SPHERES; RUTILE TIO2; EFFICIENT; NANOCOMPOSITE; COMPOSITES;
D O I
10.1016/j.jpowsour.2019.02.094
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report a controllable, low-cost and large-scale synthesis protocol for foam-like, 3-dimension mesopore N-doped carbon assembling TiO2 nanoparticles (P25). The process uses common P25 as raw material, PVP as dispersing agent and binder as well as carbon precursor, boiling bubbles as template, solidifying the boiling foam by PVP-coating-and-connecting TiO2 nanoparticles. The carbonization transforms PVP-assembling to carbon-assembling, and the obtained carbon is doped by a little N, which endows the carbon with higher conductivity. It is found that the synthesized material possesses abundant mesopores, individual nanoparticles-assembled structure and high conductive N-doped carbon matrix; shows large specific surface area and pore volume. As anode material for lithium-ion batteries (LIBs), foam-like P25 exhibits superior lithium storage properties with high discharge capacity, stable cycling performance and excellent rate capability. At 1C, foam-like P25 delivers discharge capacity of 223.1 mAh g(-1) at the 200th cycle, and average discharge capacity over 200 cycles reaches 227 mAh g(-1). These excellent electrochemical properties should be attributed to the unique foam-like mesoporous structure that greatly improves lithium storage properties of common P25, especially enhances pseudocapacitive interfacial storage of P25. The synthetic method has great potential for large scale production of foam-like P25 for practical application in high-performance LIBs.
引用
收藏
页码:38 / 45
页数:8
相关论文
共 50 条
  • [1] Conformal N-doped carbon on nanoporous TiO2 spheres as a high-performance anode material for lithium-ion batteries
    Qiao, Yun
    Hu, Xianluo
    Liu, Yang
    Chen, Chaoji
    Xu, Henghui
    Hou, Dongfang
    Hu, Pei
    Huang, Yunhui
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (35) : 10375 - 10381
  • [2] High Performance N-Doped Mesoporous Carbon Decorated TiO2 Nanofibers as Anode Materials for Lithium-Ion Batteries
    Ryu, Myung-Hyun
    Jung, Kyu-Nam
    Shin, Kyung-Hee
    Han, Kyoo-Seung
    Yoon, Sukeun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (16): : 8092 - 8098
  • [3] Novel mesoporous TiO2 spheres as anode material for high-performance lithium-ion batteries
    Guo, Jianqiang
    Li, Jing
    Huang, Yeju
    Zeng, Min
    Peng, Rufang
    MATERIALS LETTERS, 2016, 181 : 289 - 291
  • [4] Mesoporous TiO2 Spheres/Graphene Composite as a High-Performance Anode Material for Lithium-ion Batteries
    Du, Tianyu
    Zhang, Weixing
    Peng, Han
    Jain, Gaurav
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (07): : 6229 - 6235
  • [5] Tin nanoparticles embedded in porous N-doped graphene-like carbon network as high-performance anode material for lithium-ion batteries
    Zhou, Dan
    Song, Wei-Li
    Li, Xiaogang
    Fan, Li-Zhen
    Deng, Yonghong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 699 : 730 - 737
  • [6] P25/graphene nanocomposites as a high-performance anode material for lithium ion batteries
    Xiao, Ying
    Qin, Jinwen
    Hu, Changwen
    Cao, Minhua
    MATERIALS CHEMISTRY AND PHYSICS, 2013, 141 (01) : 153 - 159
  • [7] FeMoO4/N-doped porous carbon composites as anode material for high-performance lithium-ion batteries
    Xie, Jingjing
    Tang, Fei
    Li, Haifeng
    Jiang, Wei
    Yang, Zhenglong
    Zhao, Deyang
    Xu, Yanbin
    Meng, Yanfeng
    Sun, Wenjuan
    Jiang, Ziqiao
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 943
  • [8] SiOx embedded in N-doped carbon nanoslices: A scalable synthesis of high-performance anode material for lithium-ion batteries
    Zhang, Kaiyuan
    Du, Wenzheng
    Qian, Zhao
    Lin, Liangdong
    Gu, Xin
    Yang, Jian
    Qian, Yitai
    CARBON, 2021, 178 (178) : 202 - 210
  • [9] Coral-like α-MnS composites with N-doped carbon as anode materials for high-performance lithium-ion batteries
    Liu, Yang
    Qiao, Yun
    Zhang, Wu-Xing
    Li, Zhen
    Hu, Xian-Luo
    Yuan, Li-Xia
    Huang, Yun-Hui
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (45) : 24026 - 24033
  • [10] Dual Immobilization of SnOx Nanoparticles by N-Doped Carbon and TiO2 for High-Performance Lithium-Ion Battery Anodes
    Ying, Hangjun
    Yang, Tiantian
    Zhang, Shunlong
    Guo, Rongnan
    Wang, Jianli
    Han, Wei-Qiang
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (50) : 55820 - 55829