Specific Ion Effects on an Oligopeptide: Bidentate Binding Matters for the Guanidinium Cation

被引:29
|
作者
Balos, Vasileios [1 ,2 ]
Marekha, Bogdan [1 ]
Malm, Christian [1 ]
Wagner, Manfred [1 ]
Nagata, Yuki [1 ]
Bonn, Mischa [1 ]
Hunger, Johannes [1 ]
机构
[1] Max Planck Inst Polymer Res, Mol Spect Dept, Ackermannweg 10, D-55128 Mainz, Germany
[2] Fritz Haber Inst Max Planck Soc, Dept Phys Chem, Faradayweg 4, D-14195 Berlin, Germany
基金
欧洲研究理事会;
关键词
dielectric spectroscopy; Hofmeister effects; molecular dynamics simulations; protein denaturation; triglycine; HOFMEISTER SERIES; AQUEOUS-SOLUTIONS; DIELECTRIC-RELAXATION; SPECTROSCOPY; WATER; HYDRATION; DYNAMICS; ALKALI; AMIDES; SALTS;
D O I
10.1002/anie.201811029
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ion-protein interactions are important for protein function, yet challenging to rationalize owing to the multitude of possible ion-protein interactions. To explore specific ion effects on protein binding sites, we investigate the interaction of different salts with the zwitterionic peptide triglycine in solution. Dielectric spectroscopy shows that salts affect the peptide's reorientational dynamics, with a more pronounced effect for denaturing cations (Li+, guanidinium (Gdm(+))) and anions (I-, SCN-) than for weakly denaturing ones (K+, Cl-). The effects of Gdm(+) and Li+ were found to be comparable. Molecular dynamics simulations confirm the enhanced binding of Gdm(+) and Li+ to triglycine, yet with a different binding geometry: While Li+ predominantly binds to the C-terminal carboxylate group, bidentate binding to the terminus and the nearest amide is particularly important for Gdm(+). This bidentate binding markedly affects peptide conformation, and may help to explain the high denaturation activity of Gdm(+) salts.
引用
收藏
页码:332 / 337
页数:6
相关论文
共 50 条
  • [1] Binding of an oligopeptide to a specific plane of ice
    Houston, ME
    Chao, H
    Hodges, RS
    Sykes, BD
    Kay, CM
    Sönnichsen, FD
    Loewen, MC
    Davies, PL
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (19) : 11714 - 11718
  • [2] Guanidinium Cation Substitution Effects on Perovskite Solar Cells
    Oh, Jaewon
    Hwang, Muntae
    Lee, Hyunbok
    Ryu, Mee-Yi
    APPLIED SCIENCE AND CONVERGENCE TECHNOLOGY, 2022, 31 (06): : 161 - 163
  • [3] Counterion Effects on the Denaturing Activity of Guanidinium Cation to Protein
    Shao, Qiang
    Fan, Yubo
    Yang, Lijiang
    Gao, Yi Qin
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (11) : 4364 - 4373
  • [4] Specific ion binding to macromolecules:: Effects of hydrophobicity and ion pairing
    Lund, Mikael
    Vacha, Robert
    Jungwirth, Pavel
    LANGMUIR, 2008, 24 (07) : 3387 - 3391
  • [5] Ion-Specific Effects in Carboxylate Binding Sites
    Stevens, Mark J.
    Rempe, Susan L. B.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2016, 120 (49): : 12519 - 12530
  • [6] SPECIFIC OXIDATION OF COPPER BINDING SITES IN COPPER(II)-OLIGOPEPTIDE COMPLEXES
    LEVITZKI, A
    BERGER, A
    BIOCHEMISTRY, 1971, 10 (01) : 64 - &
  • [7] Ion Migration in Lead-Halide Perovskites: Cation Matters
    Niu, Kai
    Wang, Chenyang
    Zeng, Jiejun
    Wang, Zirui
    Liu, Yang
    Wang, Linjun
    Li, Cheng
    Jin, Yizheng
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (04): : 1006 - 1018
  • [8] Cation specific binding with protein surface charges
    Hess, Berk
    van der Vegt, Nico F. A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (32) : 13296 - 13300
  • [9] Effects of Cation Binding to the Intracellular Vestibule of TMEM16 Ion Transport Pathways
    Nguyen, Dung M.
    Chen, Tsung-Yu
    BIOPHYSICAL JOURNAL, 2020, 118 (03) : 419A - 419A
  • [10] A bidentate Lewis acid with a telluronium ion as an anion-binding site
    Zhao, Haiyan
    Gabbai, Francois P.
    NATURE CHEMISTRY, 2010, 2 (11) : 984 - 990