On the Number of τ-Tilting Modules over Nakayama Algebras

被引:3
|
作者
Gao, Hanpeng [1 ]
Schiffler, Ralf [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Peoples R China
[2] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
关键词
tau-tilting modules; support tau-tilting modules; Nakayama algebras;
D O I
10.3842/SIGMA.2020.058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Lambda(r)(n) be the path algebra of the linearly oriented quiver of type A with n vertices modulo the r-th power of the radical, and let (Lambda) over tilde (r)(n) be the path algebra of the cyclically oriented quiver of type (A) over tilde with n vertices modulo the r-th power of the radical. Adachi gave a recurrence relation for the number of tau-tilting modules over Lambda(r)(n). In this paper, we show that the same recurrence relation also holds for the number of tau-tilting modules over (Lambda) over tilde (r)(n). As an application, we give a new proof for a result by Asai on recurrence formulae for the number of support tau-tilting modules over Lambda(r)(n) and (Lambda) over tilde (r)(n).
引用
收藏
页数:13
相关论文
共 50 条