EGNET: A NOVEL EDGE GUIDED NETWORK FOR INSTANCE SEGMENTATION

被引:1
|
作者
Du, Kaiwen [1 ]
Wang, Xiao [1 ]
Yan, Yan [1 ]
Lu, Yang [1 ]
Wang, Hanzi [1 ]
机构
[1] Xiamen Univ, Sch Informat, Fujian Key Lab Sensing & Comp Smart City, Xiamen, Peoples R China
来源
2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2022年
基金
中国国家自然科学基金;
关键词
Instance segmentation; edge guidance; spatial attention; semantic enhancement;
D O I
10.1109/ICIP46576.2022.9897497
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Edge information plays a significant role in instance segmentation. However, many instance segmentation methods directly perform pixel-wise classification via fully convolutional networks, which may ignore object edges. In this paper, we propose a novel Edge Guided Network (EGNet), which exploits edge information to improve the mask accuracy, for instance segmentation. Specifically, we propose an edge branch to extract edge information. Then, we use edge information as guidance and fuse it with mask features, in order to enrich the mask features. Furthermore, we propose a Spatial Attention (SA) module and add it to the backbone of our EGNet, enabling the network to focus more on foreground objects. In addition, we incorporate a Semantic Enhancement (SE) module into the edge branch, aiming to obtain additional global context information. Experimental results on the COCO 2017 dataset show the effectiveness of the proposed EGNet.
引用
收藏
页码:3868 / 3872
页数:5
相关论文
共 50 条
  • [1] DFENet: A Novel Dimension Fusion Edge Guided Network for Brain MRI Segmentation
    Basak H.
    Hussain R.
    Rana A.
    SN Computer Science, 2021, 2 (6)
  • [2] EGNet: Edge Guidance Network for Salient Object Detection
    Zhao, Jia-Xing
    Liu, Jiang-Jiang
    Fan, Deng-Ping
    Cao, Yang
    Yang, Ju-Feng
    Cheng, Ming-Ming
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8778 - 8787
  • [3] FGN: Fully Guided Network for Few-Shot Instance Segmentation
    Fan, Zhibo
    Yu, Jin-Gang
    Liang, Zhihao
    Ou, Jiarong
    Gao, Changxin
    Xia, Gui-Song
    Li, Yuanqing
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, : 9169 - 9178
  • [4] Corner guided instance segmentation network for power lines and transmission towers detection
    Zhu, Gaoyi
    Zhang, Wenxuan
    Wang, Mei
    Wang, Jie
    Fang, Xia
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 234
  • [5] Efficient Instance Segmentation Network
    Huang, Chenquan
    Wu, Weiping
    Lei, Zhihua
    PROCEEDINGS OF 2020 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS), 2020, : 93 - 101
  • [6] A Novel Boundary-Guided Global Feature Fusion Module for Instance Segmentation
    Gao, Linchun
    Wang, Shoujun
    Chen, Songgui
    NEURAL PROCESSING LETTERS, 2024, 56 (02)
  • [7] A Novel Boundary-Guided Global Feature Fusion Module for Instance Segmentation
    Linchun Gao
    Shoujun Wang
    Songgui Chen
    Neural Processing Letters, 56
  • [8] UGainS: Uncertainty Guided Anomaly Instance Segmentation
    Nekrasov, Alexey
    Hermans, Alexander
    Kuhnert, Lars
    Leibe, Bastian
    PATTERN RECOGNITION, DAGM GCPR 2023, 2024, 14264 : 50 - 66
  • [9] A Novel Real-Time Edge-Guided LiDAR Semantic Segmentation Network for Unstructured Environments
    Yin, Xiaoqing
    Li, Xu
    Ni, Peizhou
    Xu, Qimin
    Kong, Dong
    REMOTE SENSING, 2023, 15 (04)
  • [10] Dual attention-guided feature pyramid network for instance segmentation of group pigs
    Hu, Zhiwei
    Yang, Hua
    Lou, Tiantian
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2021, 186