Majorana bound state of a Bogoliubov-de Gennes-Dirac Hamiltonian in arbitrary dimensions

被引:4
|
作者
Imura, Ken-Ichiro [1 ]
Fukui, Takahiro [2 ]
Fujiwara, Takanori [2 ]
机构
[1] Hiroshima Univ, AdSM, Dept Quantum Matter, Hiroshima 7398530, Japan
[2] Ibaraki Univ, Dept Phys, Mito, Ibaraki 3108512, Japan
关键词
Majorana bound state; Bogoliubov-de Gennes equation; Dirac Hamiltonian; Index theorem; Topological invariant; Berry phase; SYSTEM;
D O I
10.1016/j.nuclphysb.2011.09.003
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study a Majorana zero-energy state bound to a hedgehog-like point defect in a topological superconductor described by a Bogoliubov-de Gennes (BdG)-Dirac type effective Hamiltonian. We first give an explicit wave function of a Majorana state by solving the BdG equation directly, from which an analytical index can be obtained. Next, by calculating the corresponding topological index, we show a precise equivalence between both indices to confirm the index theorem. Finally, we apply this observation to reexamine the role of another topological invariant, i.e., the Chern number associated with the Berry curvature proposed in the study of protected zero modes along the lines of topological classification of insulators and superconductors. We show that the Chem number is equivalent to the topological index, implying that it indeed reflects the number of zero-energy states. Our theoretical model belongs to the BDI class from the viewpoint of symmetry, whereas the spatial dimension d of the system is left arbitrary throughout the paper. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:306 / 320
页数:15
相关论文
共 50 条
  • [1] Pairing in the Bogoliubov-de Gennes equations
    Kim, YJ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1997, 11 (14): : 1731 - 1742
  • [2] Modified Bogoliubov-de Gennes treatment for Majorana conductances in three-terminal transports
    Xin-Qi Li
    Wei Feng
    Lupei Qin
    Jinshuang Jin
    Science China Physics, Mechanics & Astronomy, 2022, 65
  • [3] Modified Bogoliubov-de Gennes treatment for Majorana conductances in three-terminal transports
    Li, Xin-Qi
    Feng, Wei
    Qin, Lupei
    Jin, Jinshuang
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2022, 65 (03)
  • [4] Modified Bogoliubov-de Gennes treatment for Majorana conductances in three-terminal transports
    Xin-Qi Li
    Wei Feng
    Lupei Qin
    Jinshuang Jin
    Science China(Physics,Mechanics & Astronomy), 2022, (03) : 89 - 95
  • [5] Bogoliubov-de Gennes theory of the snake instability of gray solitons in higher dimensions
    Gaidoukov, Alexej
    Anglin, James R.
    PHYSICAL REVIEW A, 2021, 103 (01)
  • [6] Vortex lattices and the Bogoliubov-de Gennes equations
    Chenn, Ilias
    Sigal, I. M.
    ADVANCES IN MATHEMATICS, 2021, 380
  • [7] A scattering view of the Bogoliubov-de Gennes equations
    Simonucci, Stefano
    Garberoglio, Giovanni
    Taioli, Simone
    LECTURES ON THE PHYSICS OF STRONGLY CORRELATED SYSTEMS XVI, 2012, 1485 : 312 - 318
  • [8] The Dirac-Frenkel Principle for Reduced Density Matrices, and the Bogoliubov-de Gennes Equations
    Benedikter, Niels
    Sok, Jeremy
    Solovej, Jan Philip
    ANNALES HENRI POINCARE, 2018, 19 (04): : 1167 - 1214
  • [9] Linear and Nonlinear Bullets of the Bogoliubov-de Gennes Excitations
    Kumar, S.
    Perego, A. M.
    Staliunas, K.
    PHYSICAL REVIEW LETTERS, 2017, 118 (04)
  • [10] Discretization and solution of the inhomogeneous Bogoliubov-de Gennes equations
    McPeake, D
    McCann, JF
    COMPUTER PHYSICS COMMUNICATIONS, 2004, 161 (03) : 119 - 128