A new unifying heuristic algorithm for the undirected minimum cut problems using minimum range cut algorithms

被引:4
|
作者
Dai, Y
Imai, H
Iwano, K
Katoh, N
Ohtsuka, K
Yoshimura, N
机构
[1] KOBE UNIV COMMERCE,DEPT MANAGEMENT SCI,KOBE 65121,JAPAN
[2] UNIV TOKYO,FAC SCI,DEPT INFORMAT SCI,BUNKYO KU,TOKYO 113,JAPAN
[3] IBM JAPAN LTD,TOKYO RES LAB,KANAGAWA 242,JAPAN
关键词
D O I
10.1016/0166-218X(95)00034-O
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a connected undirected multigraph with n vertices and m edges, we first propose a new unifying heuristic approach to approximately solving the minimum cut and the s-t minimum cut problems by using efficient algorithms for the corresponding minimum range cut problems. Our method is based on the association of the range value of a cut and its cut value when each edge weight is chosen uniformly randomly from the Bred interval. Our computational experiments demonstrate that this approach produces very good approximate solutions. We shall also propose an O(log(2) n) time parallel algorithm using O(n(2)) processors on an arbitrary CRCW PRAM model for the minimum range cut problems, by which we can efficiently obtain approximate minimum cuts in poly-log time using a polynomial number of processors.
引用
收藏
页码:167 / 190
页数:24
相关论文
共 50 条
  • [1] EFFICIENT ALGORITHMS FOR THE MINIMUM RANGE CUT PROBLEMS
    KATOH, N
    IWANO, K
    [J]. LECTURE NOTES IN COMPUTER SCIENCE, 1991, 519 : 80 - 91
  • [2] EFFICIENT ALGORITHMS FOR MINIMUM RANGE CUT PROBLEMS
    KATOH, N
    IWANO, K
    [J]. NETWORKS, 1994, 24 (07) : 395 - 407
  • [3] Minimum cut bases in undirected networks
    Bunke, Florentine
    Hamacher, Horst W.
    Maffioli, Francesco
    Schwahn, Anne M.
    [J]. DISCRETE APPLIED MATHEMATICS, 2010, 158 (04) : 277 - 290
  • [4] UNIFYING MAXIMUM CUT AND MINIMUM CUT OF A PLANAR GRAPH
    SHIH, WK
    WU, S
    KUO, YS
    [J]. IEEE TRANSACTIONS ON COMPUTERS, 1990, 39 (05) : 694 - 697
  • [5] Parallel algorithms for the minimum cut and the minimum length tree layout problems
    Diaz, J
    Gibbons, A
    Pantziou, GE
    Serna, MJ
    Spirakis, PG
    Toran, J
    [J]. THEORETICAL COMPUTER SCIENCE, 1997, 181 (02) : 267 - 287
  • [6] New algorithms for the minimum coloring cut problem
    Bordini, Augusto
    Protti, Fabio
    da Silva, Thiago Gouveia
    de Sousa Filho, Gilberto Farias
    [J]. INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2019, 26 (05) : 1868 - 1883
  • [7] Cardinality constrained minimum cut problems: complexity and algorithms
    Bruglieri, M
    Maffioli, F
    Ehrgott, M
    [J]. DISCRETE APPLIED MATHEMATICS, 2004, 137 (03) : 311 - 341
  • [8] Practical minimum cut algorithms
    Henzinger M.
    Noe A.
    Schulz C.
    Strash D.
    [J]. 2018, Association for Computing Machinery, 2 Penn Plaza, Suite 701, New York, NY 10121-0701, United States (23):
  • [9] I/O Efficient Algorithms for the Minimum Cut Problem on Unweighted Undirected Graphs
    Bhushan, Alka
    Sajith, G.
    [J]. ALGORITHMS AND COMPUTATION, WALCOM 2014, 2014, 8344 : 188 - 199
  • [10] I/O efficient algorithms for the minimum cut problem on unweighted undirected graphs
    Bhushan, Alka
    Sajith, G.
    [J]. THEORETICAL COMPUTER SCIENCE, 2015, 575 : 33 - 41