Interference of sample size on multicollinearity diagnosis in path analysis

被引:9
|
作者
Sari, Bruno Giacomini [1 ]
Lucio, Alessandro Dal'Col [1 ]
Olivoto, Tiago [1 ]
Krysczun, Dionatan Ketzer [1 ]
Tischler, Andre Luis [1 ]
Drebes, Lucas [1 ]
机构
[1] Univ Fed Santa Maria, Dept Fitotecnia, Ave Roraima 1-000, BR-97105900 Santa Maria, RS, Brazil
关键词
Solanum lycopersicum; bootstrapping; multivariate analysis; sampling;
D O I
10.1590/S0100-204X2018000600014
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The objective of this work was to evaluate the interference of sample size on multicollinearity diagnosis in path analysis. From the analyses of productive traits of cherry tomato, two Pearson correlation matrices were obtained, one with severe multicollinearity and the other with weak multicollinearity. Sixty-six sample sizes were designed, and from the amplitude of the bootstrap confidence interval, it was observed that sample size interfered on multicollinearity diagnosis. When sample size was small, the imprecision of the diagnostic criteria estimates interfered with multicollinearity diagnosis in the matrix with weak multicollinearity.
引用
收藏
页码:769 / 773
页数:5
相关论文
共 50 条
  • [1] Path analysis under multicollinearity in soybean
    Bizeti, HS
    de Carvalho, CGP
    de Souza, JRP
    Destro, D
    [J]. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY, 2004, 47 (05) : 669 - 676
  • [2] Multivariate nonnormality and multicollinearity in path analysis in corn
    Toebe, Marcos
    Cargnelutti Filho, Alberto
    [J]. PESQUISA AGROPECUARIA BRASILEIRA, 2013, 48 (05) : 466 - 477
  • [3] Path analysis under multicollinearity in green pepper
    de Carvalho, CGP
    Oliveira, VR
    Cruz, CD
    Casali, VWD
    [J]. PESQUISA AGROPECUARIA BRASILEIRA, 1999, 34 (04) : 603 - 613
  • [4] Sample size to evaluate the degree of multicollinearity in rye morphological traits
    Neu, Ismael Mario Marcio
    Filho, Alberto Cargnelutti
    Toebe, Marcos
    Carini, Fernanda
    Pezzini, Rafael Vieira
    Silveira, Daniela Lixinski
    [J]. REVISTA CAATINGA, 2023, 36 (01) : 215 - 225
  • [5] CALCULATING THE SAMPLE SIZE FOR ORDINARY LEAST SQUARE ESTIMATION IN PRESENCE OF MULTICOLLINEARITY
    Oyewole, O.
    Adedotun, Adedayo F.
    Adeyiga, J. A.
    Oyewole, A. A.
    Akingbade, Toluwalase J.
    Onayemi, Oluwatosin O.
    Odekina, Onuche G.
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2023, 89 (02) : 243 - 261
  • [6] DIAGNOSIS OF MULTICOLLINEARITY
    GILBERT, CL
    [J]. OXFORD BULLETIN OF ECONOMICS AND STATISTICS, 1978, 40 (02) : 87 - 91
  • [7] Multicollinearity in Path Analysis: A Simple Method to Reduce Its Effects
    Olivoto, Tiago
    de Souza, Velci Q.
    Nardino, Maicon
    Carvalho, Ivan R.
    Ferrari, Mauricio
    de Pelegrin, Alan J.
    Szareski, Vinicius J.
    Schmidt, Denise
    [J]. AGRONOMY JOURNAL, 2017, 109 (01) : 131 - 142
  • [8] Multicollinearity in path analysis of maize (Zea mays L.)
    Toebe, Marcos
    Cargnelutti Filho, Alberto
    [J]. JOURNAL OF CEREAL SCIENCE, 2013, 57 (03) : 453 - 462
  • [9] Path analysis under multicollinearity for papaya production of the Solo and Formosa groups
    Moreira, Sarah Ola
    Kuhlcamp, Karin Tesch
    de Souza Barros, Fabiola Lacerda
    de Oliveira, Sabrina Batista
    Trindade, Roberto dos Santos
    [J]. REVISTA BRASILEIRA DE FRUTICULTURA, 2018, 40 (03)
  • [10] Sample size autocorrelation analysis of kinetic data: Resolving reaction path heterogeneity
    Murugan, R
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2002, 117 (13): : 6372 - 6377