Nonlinear Reduced Order Source Identification under Uncertainty

被引:0
|
作者
Khodayi-mehr, Reza [1 ]
Zavlanos, Michael M. [1 ]
机构
[1] Duke Univ, Dept Mech Engn & Mat Sci, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
LOCALIZATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a tractable stochastic model-based approach for identification of chemical sources that relies on the Advection-Diffusion (AD) PDE to model the transport phenomenon and utilizes Markov Chain Monte Carlo sampling to obtain the posterior distribution of the source parameters considering uncertainty in the parameters of the PDE and the sensor data. To make the algorithm tractable, we model the sources using nonlinear basis functions and utilize a model reduction method to obtain closed-form approximate solutions for the AD-PDE. The former idea drastically reduces the dimension of the sampling space while the latter facilitates the evaluation of the likelihood function. We present extensive numerical experiments that demonstrate that our algorithm can estimate the desired source parameters and provide uncertainty bounds for them.
引用
收藏
页码:2752 / 2757
页数:6
相关论文
共 50 条
  • [1] Nonlinear Reduced Order Source Identification
    Khodayi-mehr, Reza
    Aquino, Wilkins
    Zavlanos, Michael M.
    [J]. 2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 6302 - 6307
  • [2] Distributed Reduced Order Source Identification
    Khodayi-mehr, Reza
    Aquino, Wilkins
    Zavlanos, Michael M.
    [J]. 2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 1084 - 1089
  • [3] Identification of nonlinear parameters for reduced order models
    Spottswood, S. M.
    Allemang, R. J.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2006, 295 (1-2) : 226 - 245
  • [4] Reduced order nonlinear system identification methodology
    Attar, Peter J.
    Dowell, Earl H.
    White, John R.
    Thomas, Jeffrey P.
    [J]. AIAA JOURNAL, 2006, 44 (08) : 1895 - 1904
  • [5] Stochastic reduced order models for inverse problems under uncertainty
    Warner, James E.
    Aquino, Wilkins
    Grigoriu, Mircea D.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 285 : 488 - 514
  • [6] Uncertainty-based experimental validation of nonlinear reduced order models
    Murthy, Raghavendra
    Wang, X. Q.
    Perez, Ricardo
    Mignolet, Marc P.
    Richter, Lanae A.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2012, 331 (05) : 1097 - 1114
  • [7] Structural uncertainty modeling for nonlinear geometric response using nonintrusive reduced order models
    Wang, X. Q.
    Mignolet, Marc P.
    Soize, Christian
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2020, 60
  • [8] Reduced-order state reconstruction for nonlinear dynamical systems in the presence of model uncertainty
    Kazantzis, Nikolaos
    Kazantzi, Vasiliki
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (23) : 11708 - 11718
  • [9] Uncertainty Quantification for Nonlinear Reduced-Order Elasto-Dynamics Computational Models
    Capiez-Lernout, E.
    Soize, C.
    Mbaye, M.
    [J]. MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION, VOL 3, 2016, : 83 - 90
  • [10] Reduced-order control for a class of nonlinear similar interconnected systems with mismatched uncertainty
    Yan, XG
    Xie, LH
    [J]. AUTOMATICA, 2003, 39 (01) : 91 - 99