SECOND-ORDER DIFFERENTIAL EQUATIONS: ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS

被引:4
|
作者
Bazighifan, Omar [1 ]
Santra, Shyam Sundar [2 ]
机构
[1] Hadhramout Univ, Dept Math, Fac Sci, Hadhramout 50512, Yemen
[2] JIS Coll Engn, Dept Math, Kalyani 741235, W Bengal, India
关键词
Oscillation criteria; non-oscillation; delay; second-order equations; Lebesgue's dominated convergence theorem; OSCILLATION THEOREMS;
D O I
10.18514/MMN.2022.3369
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we obtain necessary and sufficient conditions for the oscillation of all solutions of the second-order delay differential equation (pi(y ')(gamma) )' (t)+ p(t) f y(tau(t))) = 0, under the assumption integral(infinity)(pi(eta))(-1/gamma) d eta = infinity, we consider two cases: when f (v)/v(beta) is non-increasing, and non-decreasing. In the final section, we provide examples illustrating the results and state an open problem.
引用
收藏
页码:105 / 115
页数:11
相关论文
共 50 条