A new analytical technique of the L-type difference schemes for time fractional mixed sub-diffusion and diffusion-wave equations

被引:25
|
作者
Sun, Zhi-Zhong [1 ]
Ji, Cui-Cui [2 ]
Du, Ruilian [1 ]
机构
[1] Southeast Univ, Sch Math, Nanjing 210096, Peoples R China
[2] Qingdao Univ, Sch Math & Stat, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金;
关键词
Time fractional equation; Mixed sub-diffusion and diffusion-wave equation; Finite difference method; L1; scheme; Stability and convergence;
D O I
10.1016/j.aml.2019.106115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A time fractional mixed sub-diffusion and diffusion-wave equation involving at least two Caputo time derivatives of order gamma is an element of (1,2) and alpha is an element of (0, 1) is considered. A new analytical technique is introduced to analyze the standard finite difference method based on L1 scheme. Both stability and convergence of the scheme are proved rigorously. The final convergence result shows clearly that the temporal accuracy arrives at the order of O(tau(min{2-alpha,3-gamma})) in a discrete H-1-norm. This novel analytical technique can provide new insights in analyzing other multi-term mixed time fractional differential equations. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation
    Wang, Zhibo
    Vong, Seakweng
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 277 : 1 - 15
  • [2] Temporal second-order difference schemes for the nonlinear time-fractional mixed sub-diffusion and diffusion-wave equation with delay
    Alikhanov, Anatoly A.
    Asl, Mohammad Shahbazi
    Huang, Chengming
    Apekov, Aslan M.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2024, 464
  • [3] On three explicit difference schemes for fractional diffusion and diffusion-wave equations
    Quintana Murillo, Joaquin
    Bravo Yuste, Santos
    [J]. PHYSICA SCRIPTA, 2009, T136
  • [4] Stability analysis of a second-order difference scheme for the time-fractional mixed sub-diffusion and diffusion-wave equation
    Alikhanov, Anatoly A.
    Asl, Mohammad Shahbazi
    Huang, Chengming
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (01) : 102 - 123
  • [5] Stability analysis of a second-order difference scheme for the time-fractional mixed sub-diffusion and diffusion-wave equation
    Anatoly A. Alikhanov
    Mohammad Shahbazi Asl
    Chengming Huang
    [J]. Fractional Calculus and Applied Analysis, 2024, 27 : 102 - 123
  • [6] Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions
    M. R. Hooshmandasl
    M. H. Heydari
    C. Cattani
    [J]. The European Physical Journal Plus, 131
  • [7] Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions
    Hooshmandasl, M. R.
    Heydari, M. H.
    Cattani, C.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (08):
  • [8] Fourth order finite difference schemes for time-space fractional sub-diffusion equations
    Pang, Hong-Kui
    Sun, Hai-Wei
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 71 (06) : 1287 - 1302
  • [9] ON AN EXPLICIT DIFFERENCE METHOD FOR FRACTIONAL DIFFUSION AND DIFFUSION-WAVE EQUATIONS
    Quintana Murillo, Joaquin
    Bravo Yuste, Santos
    [J]. PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 1031 - 1036
  • [10] Two finite difference schemes for time fractional diffusion-wave equation
    Huang, Jianfei
    Tang, Yifa
    Vazquez, Luis
    Yang, Jiye
    [J]. NUMERICAL ALGORITHMS, 2013, 64 (04) : 707 - 720