Classification of Prostate Cancer Grade Using Temporal Ultrasound: in vivo Feasibility Study

被引:5
|
作者
Ghavidel, Sahar [1 ]
Imani, Farhad [2 ]
Khallaghi, Siavash [2 ]
Gibson, Eli [3 ]
Khojaste, Amir [1 ]
Gaed, Mena [4 ]
Moussa, Madeleine [5 ]
Gomez, Jose A. [5 ]
Siemens, D. Robert [6 ]
Leveridge, Michael [6 ]
Chang, Silvia [7 ]
Fenster, Aaron [4 ]
Ward, Aaron D. [4 ]
Abolmaesumi, Purang [2 ]
Mousavi, Parvin [1 ]
机构
[1] Queens Univ, Kingston, ON, Canada
[2] Univ British Columbia, Vancouver, BC, Canada
[3] UCL, London, England
[4] Univ Western Ontario, London, ON, Canada
[5] London Hlth Sci Ctr, London, ON, Canada
[6] Kingston Gen Hosp, Kingston, ON, Canada
[7] Vancouver Gen Hosp, Vancouver, BC, Canada
关键词
Temporal ultrasound; cancer grading; class imbalance; SMOTE; AUTOMATIC FEATURE-SELECTION; MR-IMAGES; REGISTRATION;
D O I
10.1117/12.2216922
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Temporal ultrasound has been shown to have high classification accuracy in differentiating cancer from benign tissue. In this paper, we extend the temporal ultrasound method to classify lower grade Prostate Cancer (PCa) from all other grades. We use a group of nine patients with mostly lower grade PCa, where cancerous regions are also limited. A critical challenge is to train a classifier with limited aggressive cancerous tissue compared to low grade cancerous tissue. To resolve the problem of imbalanced data, we use Synthetic Minority Oversampling Technique (SMOTE) to generate synthetic samples for the minority class. We calculate spectral features of temporal ultrasound data and perform feature selection using Random Forests. In leave-one-patient-out cross validation strategy, an area under receiver operating characteristic curve (AUC) of 0.74 is achieved with overall sensitivity and specificity of 70%. Using an unsupervised learning approach prior to proposed method improves sensitivity and AUC to 80% and 0.79. This work represents promising results to classify lower and higher grade PCa with limited cancerous training samples, using temporal ultrasound.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Fusion of Multi-parametric MRI and Temporal Ultrasound for Characterization of Prostate Cancer: in vivo Feasibility Study
    Imani, Farhad
    Ghavidel, Sahar
    Abolmaesumi, Purang
    Khallaghi, Siavash
    Gibson, Eli
    Khojaste, Amir
    Gaed, Mena
    Moussa, Madeleine
    Gomez, Jose A.
    Romagnoli, Cesare
    Cool, Derek W.
    Bastian-Jordan, Matthew
    Kassam, Zahra
    Siemens, D. Robert
    Leveridge, Michael
    Chang, Silvia
    Fenster, Aaron
    Ward, Aaron D.
    Mousavi, Parvin
    MEDICAL IMAGING 2016: COMPUTER-AIDED DIAGNOSIS, 2015, 9785
  • [2] Detection of prostate cancer using temporal sequences of ultrasound data: a large clinical feasibility study
    Azizi, Shekoofeh
    Imani, Farhad
    Ghavidel, Sahar
    Tahmasebi, Amir
    Kwak, Jin Tae
    Xu, Sheng
    Turkbey, Baris
    Choyke, Peter
    Pinto, Peter
    Wood, Bradford
    Mousavi, Parvin
    Abolmaesumi, Purang
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2016, 11 (06) : 947 - 956
  • [3] Detection of prostate cancer using temporal sequences of ultrasound data: a large clinical feasibility study
    Shekoofeh Azizi
    Farhad Imani
    Sahar Ghavidel
    Amir Tahmasebi
    Jin Tae Kwak
    Sheng Xu
    Baris Turkbey
    Peter Choyke
    Peter Pinto
    Bradford Wood
    Parvin Mousavi
    Purang Abolmaesumi
    International Journal of Computer Assisted Radiology and Surgery, 2016, 11 : 947 - 956
  • [4] Ultrasound-Based Characterization of Prostate Cancer: An in vivo Clinical Feasibility Study
    Imani, Farhad
    Abolmaesumi, Purang
    Gibson, Eli
    Galesh-Khale, Amir Khojaste
    Gaed, Mena
    Moussa, Madeleine
    Gomez, Jose A.
    Romagnoli, Cesare
    Siemens, D. Robert
    Leviridge, Michael
    Chang, Silvia
    Fenster, Aaron
    Ward, Aaron D.
    Mousavi, Parvin
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2013, PT II, 2013, 8150 : 279 - 286
  • [5] Computer-Aided Prostate Cancer Detection Using Ultrasound RF Time Series: In Vivo Feasibility Study
    Imani, Farhad y
    Abolmaesumi, Purang
    Gibson, Eli
    Khojaste, Amir
    Gaed, Mena
    Moussa, Madeleine
    Gomez, Jose A.
    Romagnoli, Cesare
    Leveridge, Michael
    Chang, Silvia
    Siemens, D. Robert
    Fenster, Aaron
    Ward, Aaron D.
    Mousavi, Parvin
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (11) : 2248 - 2257
  • [6] ULTRASOUND SPECTRAL INTERROGATION OF HISTOLOGICAL GRADE IN PROSTATE CANCER USING PROSTATE HISTOSCANNING™
    Simmons, L. A. M.
    Autier, P.
    Moore, C. M.
    Emberton, M.
    EUROPEAN UROLOGY SUPPLEMENTS, 2011, 10 (02) : 302 - 302
  • [7] Multimodal classification of prostate tissue: a feasibility study on combining multiparametric MRI and ultrasound
    Ashab, Hussam Al-Deen
    Haq, Nandinee Fariah
    Nir, Guy
    Kozlowski, Piotr
    Black, Peter
    Jones, Edward C.
    Goldenberg, S. Larry
    Salcudean, Septimiu E.
    Moradi, Mehdi
    MEDICAL IMAGING 2015: COMPUTER-AIDED DIAGNOSIS, 2015, 9414
  • [8] CLASSIFICATION OF PROSTATE CANCER: HIGH GRADE VERSUS LOW GRADE USING A RADIOMICS APPROACH
    Castillo, Jose M.
    Starmans, Martijn P. A.
    Niessen, Wiro J.
    Schoots, Ivo
    Klein, Stefan
    Veenland, Jifke F.
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 1319 - 1322
  • [9] MR Guided Focused Ultrasound (MRgFU) for Treatment of Prostate Cancer: Feasibility Study of Incresing Intratumoral Uptake of Docetaxel in Vivo
    Chen, L.
    Mu, Z.
    Hachem, P.
    Chung, L.
    Richardson, T.
    Ma, C.
    Pollack, A.
    MEDICAL PHYSICS, 2008, 35 (06)
  • [10] Augmenting MRI–transrectal ultrasound-guided prostate biopsy with temporal ultrasound data: a clinical feasibility study
    Farhad Imani
    Bo Zhuang
    Amir Tahmasebi
    Jin Tae Kwak
    Sheng Xu
    Harsh Agarwal
    Shyam Bharat
    Nishant Uniyal
    Ismail Baris Turkbey
    Peter Choyke
    Peter Pinto
    Bradford Wood
    Mehdi Moradi
    Parvin Mousavi
    Purang Abolmaesumi
    International Journal of Computer Assisted Radiology and Surgery, 2015, 10 : 727 - 735