Liquid Chromatography-Mass Spectrometry-Quadrupole Time of Flight (LC/MS QToF) protein profiling of marine-derived Staphyloccous gallinarum NIOMR8 was carried out to evaluate proteins conferring chromate (Cr6+) resistance and possible metabolic pathways that were altered as a result. Expressional (up or down-regulation) responses to varying Cr6+ (0, 50, 100, 150, and 200 mu gmL(-1)) concentrations varied, with as many as 346 proteins identified. Most number of proteinstheir numbers in parentheseswere up-regulated when grown in medium with 50 mu gmL(-1) (162) and, down-regulated in medium with 100 (281) or 200 mu gmL(-1) Cr6+ (280). Among these, eight proteins were commonly up-regulated, while 58 were commonly down-regulated across all conditions of Cr6+. Expression of protein moieties in metabolic pathways like translation (38), transcription (14), replication (18) and repair (4), metabolism of carbohydrates (26), amino acids (27), nucleotides (17), and membrane transport (21) was evidenced. Up-regulation patterns suggest that reduction of molecular oxygen (5), DNA repair (4) and peptide misfolding (7) were the potential protective mechanisms employed to counter Cr6+ stress. Additionally, proteins associated with biofilm and cell wall biogenesis highlight their hypothetical involvement in toxicity tolerance. Results also indicate that at higher concentrations of Cr6+, down-regulation of functional proteins impedes normal cellular functions.