Isometric Gaussian Process Latent Variable Model for Dissimilarity Data

被引:0
|
作者
Jorgensen, Martin [1 ]
Hauberg, Soren [2 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford, England
[2] Tech Univ Denmark, Dept Math & Comp Sci, Lyngby, Denmark
基金
欧洲研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a probabilistic model where the latent variable respects both the distances and the topology of the modeled data. The model leverages the Riemannian geometry of the generated manifold to endow the latent space with a well-defined stochastic distance measure, which is modeled locally as Nakagami distributions. These stochastic distances are sought to be as similar as possible to observed distances along a neighborhood graph through a censoring process. The model is inferred by variational inference based on observations of pairwise distances. We demonstrate how the new model can encode invariances in the learned manifolds.
引用
下载
收藏
页数:10
相关论文
共 50 条
  • [1] Supervised Gaussian Process Latent Variable Model Based on Gaussian Mixture Model
    Zhang, Jiayuan
    Zhu, Ziqi
    Zou, Jixin
    2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 124 - 129
  • [2] Multimodal Similarity Gaussian Process Latent Variable Model
    Song, Guoli
    Wang, Shuhui
    Huang, Qingming
    Tian, Qi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (09) : 4168 - 4181
  • [3] A Gaussian Process Latent Variable Model for Subspace Clustering
    Li, Shangfang
    COMPLEXITY, 2021, 2021
  • [4] A Gaussian Process Latent Variable Model for BRDF Inference
    Georgoulis, Stamatios
    Vanweddingen, Vincent
    Proesmans, Marc
    Van Gool, Luc
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 3559 - 3567
  • [5] Covariate dimension reduction for survival data via the Gaussian process latent variable model
    Barrett, James E.
    Coolen, Anthony C. C.
    STATISTICS IN MEDICINE, 2016, 35 (08) : 1340 - 1353
  • [6] Similarity Gaussian Process Latent Variable Model for Multi-Modal Data Analysis
    Song, Guoli
    Wang, Shuhui
    Huang, Qingming
    Tian, Qi
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 4050 - 4058
  • [7] Supervised latent linear Gaussian process latent variable model based classification
    Hou, Zhisong
    Feng, Qigao
    Zuo, Xiangang
    Journal of Computational Information Systems, 2013, 9 (13): : 5085 - 5092
  • [8] Supervised Latent Linear Gaussian Process Latent Variable Model for Dimensionality Reduction
    Jiang, Xinwei
    Gao, Junbin
    Wang, Tianjiang
    Zheng, Lihong
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (06): : 1620 - 1632
  • [9] Supervised Gaussian Process Latent Variable Model for Dimensionality Reduction
    Gao, Xinbo
    Wang, Xiumei
    Tao, Dacheng
    Li, Xuelong
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2011, 41 (02): : 425 - 434
  • [10] Gaussian process latent variable models for visualisation of high dimensional data
    Lawrence, ND
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 16, 2004, 16 : 329 - 336