Multi-Objective Design Optimization of Multicopter using Genetic Algorithm

被引:0
|
作者
Ayaz, Ahsan [1 ]
Rasheed, Ashhad [1 ]
机构
[1] Inst Space Technol, IST, Dept Aeronaut & Astronaut, Islamabad, Pakistan
关键词
Single Objective Optimization; Multiple Objective Optimization; Mixed Integer Linear Programming; Genetic Algorithm; Variables Knitting; Score Diversity; Fitness Function; Pareto Fronts;
D O I
10.1109/IBCAST51254.2021.9393244
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Different research groups work together with different objectives in a single project. In Multicopter, Power Electronics has been assigned a task to maximize flight time whereas structural and inertial group requires light weight structure with minimum power consumption respectively. Selecting optimal readily available off the shelf components as per the mission requirement can be tricky job. It requires a trade-off between objective functions. There is significant amount of work done on multirotor using single objective optimization depending upon mission requirement but limited data is available for multiple objective optimization. One major drawback of integrating off-the-shelf components in optimization is that while optimizing one objective, the other objective may be blown out of proportions because of the same variable dependence. A multi-objective design optimization provides a pareto front which can really help the designer decide which variables to choose according to mission requirement. The pareto front actually demonstrates the trade-off between the objectives. The research aims to highlight the usability of genetic algorithm in multi-objective design optimization of multirotor with off-the-shelf components. Flight Time, power consumption and price are optimized simultaneously without payload. Mixed Integer Linear programming incorporates indexed or boolean variable. However the adaption of indexed variable into Genetic Algorithm is not completely straight forward and is therefore discussed in the paper. The variables are indexed as per the selection of parameters. These parameters are actuator (combination of propeller and motor), high efficiency DC battery and Airframe. The resultant score diversity, fitness function and Pareto fronts indicated fairly convergent and promising results. However, larger set of components offering more trade-offs between various fitness functions would definitely challenge this setup.
引用
收藏
页码:177 / 182
页数:6
相关论文
共 50 条
  • [1] Multi-objective optimization design of Screw conveyor using Genetic Algorithm
    Wang Duanyi
    [J]. THERMAL, POWER AND ELECTRICAL ENGINEERING, PTS 1 AND 2, 2013, 732-733 : 402 - 406
  • [2] A multi-objective genetic algorithm for robust design optimization
    Li, Mian
    Azarm, Shapour
    Aute, Vikrant
    [J]. GECCO 2005: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOLS 1 AND 2, 2005, : 771 - 778
  • [3] Genetic algorithm for multi-objective optimization using GDEA
    Yun, Y
    Yoon, M
    Nakayama, H
    [J]. ADVANCES IN NATURAL COMPUTATION, PT 3, PROCEEDINGS, 2005, 3612 : 409 - 416
  • [4] Multi-Objective Optimization Design for a Hybrid Energy System Using the Genetic Algorithm
    Ko, Myeong Jin
    Kim, Yong Shik
    Chung, Min Hee
    Jeon, Hung Chan
    [J]. ENERGIES, 2015, 8 (04): : 2924 - 2949
  • [5] Design of an MCML gate library using a Genetic Algorithm and Multi-objective Optimization
    Pereira-Arroyo, Roberto
    Chacon-Rodriguez, Alfonso
    [J]. TECNOLOGIA EN MARCHA, 2014, 27 (04): : 41 - 48
  • [6] Application of Genetic Algorithm to Multi-objective Optimization in LNA Design
    Prasad, Ankur
    Roy, Mousumi
    Biswas, Animesh
    George, Danielle
    [J]. 2010 ASIA-PACIFIC MICROWAVE CONFERENCE, 2010, : 362 - 365
  • [7] Shape Optimization in Product Design Using Interactive Genetic Algorithm Integrated with Multi-objective Optimization
    Kielarova, Somlak Wannarumon
    Sansri, Sunisa
    [J]. MULTI-DISCIPLINARY TRENDS IN ARTIFICIAL INTELLIGENCE, (MIWAI 2016), 2016, 10053 : 76 - 86
  • [8] Hybrid Multi-Objective Genetic Algorithm for Multi-Objective Optimization Problems
    Zhang, Song
    Wang, Hongfeng
    Yang, Di
    Huang, Min
    [J]. 2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1970 - 1974
  • [9] Multi-objective optimization scheme using Pareto Genetic Algorithm
    Qin, YT
    Ma, LH
    [J]. ICCC2004: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION VOL 1AND 2, 2004, : 1754 - 1757
  • [10] Optimization of fishing vessels using a Multi-Objective Genetic Algorithm
    Gammon, Mark A.
    [J]. OCEAN ENGINEERING, 2011, 38 (10) : 1054 - 1064