Exact solutions of the nonstationary Schrodinger equation

被引:4
|
作者
Velicheva, EP [1 ]
Suz'ko, AA
机构
[1] Gomel State Univ, Gomel, BELARUS
[2] Byelarussian Acad Sci, Inst Radiat Phys & Chem Problems, Minsk, BELARUS
关键词
D O I
10.1007/BF02575492
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
On the basis of exactly solvable stationary models for the Schrodinger equation, we develop a procedure for solving the nonstationary Schrodinger equation in an explicit analytic form. We investigate the formation of the nonadiabatic geometric phase during cyclic evolution of a quantum system.
引用
收藏
页码:687 / 693
页数:7
相关论文
共 50 条
  • [1] Exact solutions of the nonstationary Schrodinger equation (vol 115, pg 690, 1998)
    Velicheva, EP
    Suz'ko, AA
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1999, 121 (03) : 1700 - 1700
  • [2] Exact solutions of the Schrodinger equation
    Manning, MF
    [J]. PHYSICAL REVIEW, 1935, 48 (02): : 161 - 164
  • [3] Exact Solutions to the Nonlinear Schrodinger Equation
    Aktosun, Tuncay
    Busse, Theresa
    Demontis, Francesco
    van der Mee, Cornelis
    [J]. TOPICS IN OPERATOR THEORY, VOL 2: SYSTEMS AND MATHEMATICAL PHYSICS, 2010, 203 : 1 - +
  • [4] Exact Solutions for a Modified Schrodinger Equation
    Benia, Yassine
    Ruggieri, Marianna
    Scapellato, Andrea
    [J]. MATHEMATICS, 2019, 7 (10)
  • [5] Exact solutions of the nonstationary Schrödinger equation
    E. P. Velicheva
    A. A. Suz'ko
    [J]. Theoretical and Mathematical Physics, 1999, 121 : 1700 - 1700
  • [6] Exact solutions of the nonstationary Schrödinger equation
    E. P. Velicheva
    A. A. Suz'ko
    [J]. Theoretical and Mathematical Physics, 1998, 115 : 687 - 693
  • [7] ON EXACT-SOLUTIONS OF THE SCHRODINGER-EQUATION
    YANG, CL
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (13): : 2531 - 2540
  • [8] Exact solutions to a nonlinearly dispersive Schrodinger equation
    Geng, Yixiang
    Li, Jibin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2008, 195 (02) : 420 - 439
  • [9] A Family of Exact Solutions for the Nonlinear Schrodinger Equation
    HUANG De bin
    [J]. Advances in Manufacturing, 2001, (04) : 273 - 275
  • [10] Exact solutions of a nonlocal nonlinear Schrodinger equation
    Gao, Hui
    Xu, Tianzhou
    Yang, Shaojie
    Wang, Gangwei
    [J]. OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2016, 10 (9-10): : 651 - 657