Evaluation of VIIRS Land Aerosol Model Selection with AERONET Measurements

被引:6
|
作者
Wang, Wei [1 ]
Pan, Zengxin [1 ]
Mao, Feiyue [1 ,2 ,3 ]
Gong, Wei [1 ,3 ]
Shen, Longjiao [4 ]
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Hubei, Peoples R China
[2] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Hubei, Peoples R China
[3] Collaborat Innovat Ctr Geospatial Technol, Wuhan 430079, Hubei, Peoples R China
[4] Wuhan Environm Monitoring Ctr, Wuhan 430015, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
aerosol model; VIIRS; AOD; AERONET; OPTICAL-THICKNESS; VARIABILITY; PRODUCTS; NETWORK; CLOUDS; CHINA;
D O I
10.3390/ijerph14091016
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Visible Infrared Imaging Radiometer Suite (VIIRS) is a next-generation polar-orbiting operational environmental sensor with a capability for global aerosol observations. Identifying land aerosol types is important because aerosol types are a basic input in retrieving aerosol optical properties for VIIRS. The VIIRS algorithm can automatically select the optimal land aerosol model by minimizing the residual between the derived and expected spectral surface reflectance. In this study, these selected VIIRS aerosol types are evaluated using collocated aerosol types obtained from the Aerosol Robotic Network (AERONET) level 1.5 from 23 January 2013 to 28 February 2017. The spatial distribution of VIIRS aerosol types and the aerosol optical depth bias (VIIRS minus AERONET) demonstrate that misidentifying VIIRS aerosol types may lead to VIIRS retrieval being overestimated over the Eastern United States and the developed regions of East Asia, as well as underestimated over Southern Africa, India, and Northeastern China. Approximately 22.33% of VIIRS aerosol types are coincident with that of AERONET. The agreements between VIIRS and AERONET for fine non-absorbing and absorbing aerosol types are approximately 36% and 57%, respectively. However, the agreement between VIIRS and AERONET is extremely low (only 3.51%). The low agreement for coarse absorbing dust may contribute to the poor performance of VIIRS retrieval under the aerosol model (R = 0.61). Results also show that an appropriate aerosol model can improve the retrieval performance of VIIRS over land, particularly for dust type (R increases from 0.61 to 0.72).
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Evaluation of the MERIS aerosol product over land with AERONET
    Vidot, J.
    Santer, R.
    Aznay, O.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (24) : 7603 - 7617
  • [2] Evaluation of the multi-angle implementation of atmospheric correction (MAIAC) aerosol algorithm through intercomparison with VIIRS aerosol products and AERONET
    Superczynski, Stephen D.
    Kondragunta, Shobha
    Lyapustin, Alexei I.
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (05) : 3005 - 3022
  • [3] Evaluation of VIIRS ocean color data using measurements from the AERONET-OC sites
    Ahmed, Samir
    Gilerson, Alex
    Hlaing, Soe
    Ioannou, Ioannis
    Wang, Menghua
    Weidemann, Alan
    Arnone, Robert A.
    OCEAN SENSING AND MONITORING V, 2013, 8724
  • [4] Characteristics of aerosol types from AERONET sunphotometer measurements
    Lee, J.
    Kim, J.
    Song, C. H.
    Kim, S. B.
    Chun, Y.
    Sohn, B. J.
    Holben, B. N.
    ATMOSPHERIC ENVIRONMENT, 2010, 44 (26) : 3110 - 3117
  • [5] Evaluation and comparison of VIIRS dark target and deep blue aerosol products over land
    Wang, Qingxin
    Li, Siwei
    Yang, Jie
    Zhou, Dong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 869
  • [6] Assessment of Aerosol optical depth under background and polluted conditions using AERONET and VIIRS datasets
    Kim, Mijin
    Kim, Seung Hee
    Kim, Woogyung Vincent
    Lee, Yun Gon
    Kim, Jhoon
    Kafatos, Menas C.
    ATMOSPHERIC ENVIRONMENT, 2021, 245
  • [7] EVALUATION OF THE VIIRS LAND ALGORITHMS AT LAND PEATE
    Wolfe, Robert E.
    Devadiga, Sadashiva
    Ye, Gang
    Masuoka, Edward J.
    Schweiss, Robert J.
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 304 - 307
  • [8] Accuracy assessment of MODIS land aerosol optical thickness algorithms using AERONET measurements over North America
    Jethva, Hiren
    Torres, Omar
    Yoshida, Yasuko
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2019, 12 (08) : 4291 - 4307
  • [9] Evaluation of climate model aerosol seasonal and spatial variability over Africa using AERONET
    Horowitz, Hannah M.
    Garland, Rebecca M.
    Thatcher, Marcus
    Landman, Willem A.
    Dedekind, Zane
    van der Merwe, Jacobus
    Engelbrecht, Francois A.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2017, 17 (22) : 13999 - 14023
  • [10] Aerosol optical depth over land: Comparing AERONET, AVHRR and MODIS
    Hauser, A
    Oesch, D
    Foppa, N
    GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (17) : 1 - 4