CIRCULAR RELEVANCE FEEDBACK FOR REMOTE SENSING IMAGE RETRIEVAL

被引:0
|
作者
Tang, Xu [1 ]
Zhang, Xiangrong [1 ]
Liu, Fang [1 ]
Jiao, Licheng [1 ]
机构
[1] Xidian Univ, Sch Artificial Intelligence,Key Lab Intelligent P, Int Res Ctr Intelligent Percept & Computat,Minist, Joint Int Res Lab Intelligent Percept & Computat, Xian, Shaanxi 710071, Peoples R China
基金
中国博士后科学基金;
关键词
Relevance feedback; remote sensing image retrieval; CLASSIFICATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Relevance feedback (RF) is a popular reranking technique, which aims at improving the performance of image retrieval by taking the user's opinions into account. In this paper, we introduce a new RF method, named circular relevance feedback (CRF), to enhance the behavior of remote sensing image retrieval (RSIR). Instead of the manual selection used in the common RF method, we adopt the active learning (AL) algorithm to select the samples from the initial results automatically in each RF iteration. Moreover, to ensure the selected images are representative and informative enough, we choose different AL algorithms to complete the different RF processes. Finally, the contributions of all AL-driven RF methods are integrated using a circular fusion scheme. The encouraging experimental results on the ground truth RS image archive illustrate that our CRF is useful for enhancing the performance of RSIR. In addition, compared with many existing RF methods, our CRF achieves improved behavior.
引用
收藏
页码:8953 / 8956
页数:4
相关论文
共 50 条
  • [1] An improved SVM model for relevance feedback in remote sensing image retrieval
    Ma, Caihong
    Dai, Qin
    Liu, Jianbo
    Liu, Shibin
    Yang, Jin
    [J]. INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2014, 7 (09) : 725 - 745
  • [2] Interactive remote-sensing image retrieval using active relevance feedback
    Ferecatu, Marin
    Boujemaa, Nozha
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (04): : 818 - 826
  • [3] Remote Sensing Image Retrieval using Hybrid Visual Geometry Group Network with Relevance Feedback
    Vharkate, Minakshi N.
    Musande, Vijaya B.
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (14) : 5540 - 5567
  • [4] Remote Sensing Image Retrieval Using a Context-Sensitive Bayesian Network with Relevance Feedback
    Li, Yikun
    Bretschneider, Timo
    [J]. 2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 2461 - 2464
  • [5] A Novel Active Learning Method in Relevance Feedback for Content-Based Remote Sensing Image Retrieval
    Demir, Beguem
    Bruzzone, Lorenzo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (05): : 2323 - 2334
  • [6] AN IMPROVED SVM plus GA RELEVANCE FEEDBACK MODEL IN THE REMOTE SENSING IMAGE CHANGE INFORMATION RETRIEVAL
    Ma, Caihong
    Chen, Fu
    Liu, Jianbo
    Duan, Jianbo
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5013 - 5016
  • [7] Image Retrieval with relevance feedback
    Fang, L
    Hock, AY
    [J]. 29TH APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, PROCEEDINGS, 2000, : 85 - 91
  • [8] Image Retrieval Using ESNs and Relevance Feedback
    Yang, Yuan-feng
    Wu, Jian
    Fang, Jing
    Cui, Zhi-ming
    [J]. 2012 11TH INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND APPLICATIONS TO BUSINESS, ENGINEERING & SCIENCE (DCABES), 2012, : 383 - 387
  • [9] Relevance feedback for semantics based image retrieval
    Yoon, JH
    Jayant, N
    [J]. 2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL I, PROCEEDINGS, 2001, : 42 - 45
  • [10] Relevance feedback for cross language image retrieval
    Clough, P
    Sanderson, M
    [J]. ADVANCES IN INFORMATION RETRIEVAL, PROCEEDINGS, 2004, 2997 : 238 - 252