SYMMETRY ANALYSIS AND NUMERICAL SOLUTIONS FOR SEMILINEAR ELLIPTIC SYSTEMS

被引:0
|
作者
Diggans, C. Tyler [1 ]
Neuberger, John M. [1 ]
Swift, James W. [1 ]
机构
[1] No Arizona Univ, Dept Math, Flagstaff, AZ 86011 USA
关键词
Nonlinear elliptic PDE; elliptic systems; Newton's method; GNGA; bifurcation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a two-parameter family of so-called Hamiltonian systems defined on a region Omega in R-d with the bifurcation parameters lambda and mu of the form: Delta u + partial derivative/partial derivative v H-lambda,H-mu (u, v) = 0 in Omega, Delta v + partial derivative/partial derivative u H-lambda,H-mu (u, v) = 0, in Omega taking H-lambda,H-mu to be a function of two variables satisfying certain conditions. We use numerical methods adapted from Automated Bifurcation Analysis for Nonlinear Elliptic Partial Difference Equations on Graphs (Inter. J. Bif. Chaos, 2009) to approximate solution pairs. After providing a symmetry analysis of the solution space of pairs of functions defined on the unit square, we numerically approximate bifurcation surfaces over the two dimensional parameter space. A cusp catastrophe is found on the diagonal in the parameter space where lambda = mu and is explained in terms of symmetry breaking bifurcation. Finally, we suggest a more theoretical direction for our future work on this topic.
引用
收藏
页码:60 / 76
页数:16
相关论文
共 50 条
  • [1] Decay, symmetry and existence of solutions of semilinear elliptic systems
    De Figueiredo, DG
    Yang, JF
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 33 (03) : 211 - 234
  • [2] Symmetry results of large solutions for semilinear cooperative elliptic systems
    Li, Keqiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 484 (01)
  • [3] Nonexistence and Radial Symmetry of Positive Solutions of Semilinear Elliptic Systems
    Zhang, Zhengce
    Zhu, Liping
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2009, 2009
  • [4] Symmetry of the solutions of semilinear elliptic equations
    Dolbeault, J
    Felmer, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (08): : 677 - 682
  • [5] Symmetry of solutions of semilinear elliptic problems
    Van Schaftingen, Jean
    Willem, Michel
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2008, 10 (02) : 439 - 456
  • [6] Symmetry results for decay solutions of semilinear elliptic systems on half spaces
    Liu, Baiyu
    Ma, Li
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (06) : 3167 - 3177
  • [7] SYMMETRY OF COMPONENTS FOR SEMILINEAR ELLIPTIC SYSTEMS
    Quittner, Pavol
    Souplet, Philippe
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (04) : 2545 - 2559
  • [8] Semilinear elliptic systems with lack of symmetry
    Candela, AM
    Salvatore, A
    Squassina, M
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2003, 10 (1-3): : 181 - 192
  • [9] Symmetry of solutions of a semilinear elliptic problem in an annulus
    Castorina, D
    Pacella, F
    CONTRIBUTIONS TO NONLINEAR ANALYSIS: A TRIBUTE TO D. G. DE FIGUEIREDO ON THE OCCASION OF HIS 70TH BIRTHDAY, 2006, 66 : 135 - +
  • [10] A symmetry result for semilinear cooperative elliptic systems
    Damascelli, Lucio
    Gladiali, Francesca
    Pacella, Filomena
    RECENT TRENDS IN NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS II: STATIONARY PROBLEMS, 2013, 595 : 187 - +