Multi-speaker Text-to-speech Synthesis Using Deep Gaussian Processes

被引:2
|
作者
Mitsui, Kentaro [1 ]
Koriyama, Tomoki [1 ]
Saruwatari, Hiroshi [1 ]
机构
[1] Univ Tokyo, Tokyo, Japan
来源
关键词
deep Gaussian process; statistical speech synthesis; multi-speaker modeling; latent variable model; SPEAKER ADAPTATION;
D O I
10.21437/Interspeech.2020-3167
中图分类号
R36 [病理学]; R76 [耳鼻咽喉科学];
学科分类号
100104 ; 100213 ;
摘要
Multi-speaker speech synthesis is a technique for modeling multiple speakers' voices with a single model. Although many approaches using deep neural networks (DNNs) have been proposed, DNNs are prone to overfitting when the amount of training data is limited. We propose a framework for multi-speaker speech synthesis using deep Gaussian processes (DGPs); a DGP is a deep architecture of Bayesian kernel regressions and thus robust to overfitting. In this framework, speaker information is fed to duration/acoustic models using speaker codes. We also examine the use of deep Gaussian process latent variable models (DGPLVMs). In this approach, the representation of each speaker is learned simultaneously with other model parameters, and therefore the similarity or dissimilarity of speakers is considered efficiently. We experimentally evaluated two situations to investigate the effectiveness of the proposed methods. In one situation, the amount of data from each speaker is balanced (speaker-balanced), and in the other, the data from certain speakers are limited (speaker-imbalanced). Subjective and objective evaluation results showed that both the DGP and DGPLVM synthesize multi-speaker speech more effective than a DNN in the speaker-balanced situation. We also found that the DGPLVM outperforms the DGP significantly in the speaker-imbalanced situation.
引用
收藏
页码:2032 / 2036
页数:5
相关论文
共 50 条
  • [1] Deep Voice 2: Multi-Speaker Neural Text-to-Speech
    Arik, Sercan O.
    Diamos, Gregory
    Gibiansky, Andrew
    Miller, John
    Peng, Kainan
    Ping, Wei
    Raiman, Jonathan
    Zhou, Yanqi
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [2] ECAPA-TDNN for Multi-speaker Text-to-speech Synthesis
    Xue, Jinlong
    Deng, Yayue
    Han, Yichen
    Li, Ya
    Sun, Jianqing
    Liang, Jiaen
    [J]. 2022 13TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING (ISCSLP), 2022, : 230 - 234
  • [3] Multi-speaker Emotional Text-to-speech Synthesizer
    Cho, Sungjae
    Lee, Soo-Young
    [J]. INTERSPEECH 2021, 2021, : 2337 - 2338
  • [4] Cross-lingual, Multi-speaker Text-To-Speech Synthesis Using Neural Speaker Embedding
    Chen, Mengnan
    Chen, Minchuan
    Liang, Shuang
    Ma, Jun
    Chen, Lei
    Wang, Shaojun
    Xiao, Jing
    [J]. INTERSPEECH 2019, 2019, : 2105 - 2109
  • [5] Semi-supervised Learning for Multi-speaker Text-to-speech Synthesis Using Discrete Speech Representation
    Tu, Tao
    Chen, Yuan-Jui
    Liu, Alexander H.
    Lee, Hung-yi
    [J]. INTERSPEECH 2020, 2020, : 3191 - 3195
  • [6] Multi-Lingual Multi-Speaker Text-to-Speech Synthesis for Voice Cloning with Online Speaker Enrollment
    Liu, Zhaoyu
    Mak, Brian
    [J]. INTERSPEECH 2020, 2020, : 2932 - 2936
  • [7] Training Multi-Speaker Neural Text-to-Speech Systems using Speaker-Imbalanced Speech Corpora
    Luong, Hieu-Thi
    Wang, Xin
    Yamagishi, Junichi
    Nishizawa, Nobuyuki
    [J]. INTERSPEECH 2019, 2019, : 1303 - 1307
  • [8] Lightweight, Multi-Speaker, Multi-Lingual Indic Text-to-Speech
    Singh, Abhayjeet
    Nagireddi, Amala
    Jayakumar, Anjali
    Deekshitha, G.
    Bandekar, Jesuraja
    Roopa, R.
    Badiger, Sandhya
    Udupa, Sathvik
    Kumar, Saurabh
    Ghosh, Prasanta Kumar
    Murthy, Hema A.
    Zen, Heiga
    Kumar, Pranaw
    Kant, Kamal
    Bole, Amol
    Singh, Bira Chandra
    Tokuda, Keiichi
    Hasegawa-Johnson, Mark
    Olbrich, Philipp
    [J]. IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2024, 5 : 790 - 798
  • [9] An emotional speech synthesis markup language processor for multi-speaker and emotional text-to-speech applications
    Ryu, Se-Hui
    Cho, Hee
    Lee, Ju-Hyun
    Hong, Ki-Hyung
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2021, 40 (05): : 523 - 529
  • [10] Towards Zero-Shot Multi-Speaker Multi-Accent Text-to-Speech Synthesis
    Zhang, Mingyang
    Zhou, Xuehao
    Wu, Zhizheng
    Li, Haizhou
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 947 - 951