Large-scale EEG/MEG source localization with spatial flexibility

被引:74
|
作者
Haufe, Stefan [1 ,2 ]
Tomioka, Ryota [3 ]
Dickhaus, Thorsten [1 ]
Sannelli, Claudia [1 ]
Blankertz, Benjamin [1 ,2 ,4 ]
Nolte, Guido [4 ]
Mueller, Klaus-Robert [1 ,2 ]
机构
[1] Berlin Inst Technol, Dept Comp Sci, Machine Learning Grp, D-10587 Berlin, Germany
[2] Bernstein Focus Neurotechnol, Berlin, Germany
[3] Univ Tokyo, Grad Sch Informat Sci & Technol, Informat Theoret Machine Learning & Data Min Grp, Dept Math Informat,Bunkyo Ku, Tokyo 1138656, Japan
[4] Fraunhofer Inst FIRST, Intelligent Data Anal Grp, D-12489 Berlin, Germany
关键词
EEG; MEG; Inverse problem; Basis field; Large-scale optimization; Motor imagery; Brain-computer interfaces; BRAIN-COMPUTER INTERFACE; ELECTROMAGNETIC TOMOGRAPHY; ELECTRICAL-ACTIVITY; MINIMUM; PERFORMANCE; SELECTION; REGRESSION; REGIONS; MOTOR; FIELD;
D O I
10.1016/j.neuroimage.2010.09.003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We propose a novel approach to solving the electro-/magnetoencephalographic (EEG/MEG) inverse problem which is based upon a decomposition of the current density into a small number of spatial basis fields. It is designed to recover multiple sources of possibly different extent and depth, while being invariant with respect to phase angles and rotations of the coordinate system. We demonstrate the method's ability to reconstruct simulated sources of random shape and show that the accuracy of the recovered sources can be increased, when interrelated field patterns are co-localized. Technically, this leads to large-scale mathematical problems, which are solved using recent advances in convex optimization. We apply our method for localizing brain areas involved in different types of motor imagery using real data from Brain-Computer Interface (BCI) sessions. Our approach based on single-trial localization of complex Fourier coefficients yields class-specific focal sources in the sensorimotor cortices. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:851 / 859
页数:9
相关论文
共 50 条
  • [1] EEG and MEG source localization
    Rampp S.
    [J]. Zeitschrift für Epileptologie, 2018, 31 (2): : 109 - 112
  • [2] MEG and EEG source localization in beamspace
    Rodríguez-Rivera, A
    Baryshnikov, BV
    Van Veen, BD
    Wakai, RT
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (03) : 430 - 441
  • [3] Coregistered EEG/MEG for source localization in epilepsy
    Stefan, Hermann
    [J]. EPILEPSIA, 2010, 51 : 66 - 67
  • [4] Recursive MUSIC: A framework for EEG and MEG source localization
    Mosher, JC
    Leahy, RM
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1998, 45 (11) : 1342 - 1354
  • [5] INTEGRATION OF MRI EEG MEG SPECT FOR SOURCE LOCALIZATION
    HOLLANTSGILHUIJS, M
    VANDIJK, BW
    SPEKREIJSE, H
    [J]. INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 1994, 18 (02) : 114 - 114
  • [6] Dipole source localization of epileptic discharges in EEG and MEG
    Otsubo, H
    Ochi, A
    Sakamoto, R
    Iida, K
    [J]. FRONTIERS IN HUMAN BRAIN TOPOGRAPHY, 2004, 1270 : 56 - 60
  • [7] Source localization in large-scale asynchronous sensor networks
    Ma, Fuhe
    Liu, Zhang-Meng
    Yang, Le
    Guo, Fucheng
    [J]. DIGITAL SIGNAL PROCESSING, 2021, 109
  • [8] EEG/MEG Source Localization Using Source Deflated Matching Pursuit
    Wu, Shun Chi
    Swindlehurst, A. Lee
    [J]. 2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2011, : 6572 - 6575
  • [9] Information processing in brain and behavior displayed in large-scale scalp topographies such as EEG and MEG
    Jirsa, VK
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (02): : 679 - 692
  • [10] Solving large-scale MEG/EEG source localisation and functional connectivity problems simultaneously using state-space models
    Sanchez-Bornot, Jose
    Sotero, Roberto C.
    Kelso, J. A. Scott
    Simsek, Ozguer
    Coyle, Damien
    [J]. NEUROIMAGE, 2024, 285