Machine Learning Consensus Clustering Approach for Hospitalized Patients with Phosphate Derangements

被引:6
|
作者
Thongprayoon, Charat [1 ]
Dumancas, Carissa Y. [1 ]
Nissaisorakarn, Voravech [2 ]
Keddis, Mira T. [3 ]
Kattah, Andrea G. [1 ]
Pattharanitima, Pattharawin [4 ]
Petnak, Tananchai [5 ]
Vallabhajosyula, Saraschandra [6 ]
Garovic, Vesna D. [1 ]
Mao, Michael A. [7 ]
Dillon, John J. [1 ]
Erickson, Stephen B. [1 ]
Cheungpasitporn, Wisit [1 ]
机构
[1] Mayo Clin, Div Nephrol & Hypertens, Dept Med, Rochester, MN USA
[2] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Dept Med, Div Nephrol, Boston, MA 02215 USA
[3] Mayo Clin, Div Nephrol & Hypertens, Dept Med, Phoenix, AZ 85054 USA
[4] Thammasat Univ, Fac Med, Dept Internal Med, Pathum Thani 12120, Thailand
[5] Mahidol Univ, Ramathibodi Hosp, Fac Med, Div Pulm & Pulm Crit Care Med, Bangkok 10400, Thailand
[6] Wake Forest Univ, Bowman Gray Sch Med, Dept Med, Sect Cardiovasc Med, Winston Salem, NC 27101 USA
[7] Mayo Clin, Div Nephrol & Hypertens, Jacksonville, FL 32224 USA
关键词
phosphate; hyperphosphatemia; hypophosphatemia; machine learning; artificial intelligence; clustering; electrolytes; nephrology; precision medicine; personalized medicine; individualized medicine; ACUTE KIDNEY INJURY; SERUM PHOSPHORUS; SEVERE HYPOPHOSPHATEMIA; CARDIOVASCULAR-DISEASE; BOWEL PREPARATION; CLASS DISCOVERY; RENAL-FAILURE; HYPERPHOSPHATEMIA; MORTALITY; CALCIUM;
D O I
10.3390/jcm10194441
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: The goal of this study was to categorize patients with abnormal serum phosphate upon hospital admission into distinct clusters utilizing an unsupervised machine learning approach, and to assess the mortality risk associated with these clusters. Methods: We utilized the consensus clustering approach on demographic information, comorbidities, principal diagnoses, and laboratory data of hypophosphatemia (serum phosphate <= 2.4 mg/dL) and hyperphosphatemia cohorts (serum phosphate >= 4.6 mg/dL). The standardized mean difference was applied to determine each cluster's key features. We assessed the association of the clusters with mortality. Results: In the hypophosphatemia cohort (n = 3113), the consensus cluster analysis identified two clusters. The key features of patients in Cluster 2, compared with Cluster 1, included: older age; a higher comorbidity burden, particularly hypertension; diabetes mellitus; coronary artery disease; lower eGFR; and more acute kidney injury (AKI) at admission. Cluster 2 had a comparable hospital mortality (3.7% vs. 2.9%; p = 0.17), but a higher one-year mortality (26.8% vs. 14.0%; p < 0.001), and five-year mortality (20.2% vs. 44.3%; p < 0.001), compared to Cluster 1. In the hyperphosphatemia cohort (n = 7252), the analysis identified two clusters. The key features of patients in Cluster 2, compared with Cluster 1, included: older age; more primary admission for kidney disease; more history of hypertension; more end-stage kidney disease; more AKI at admission; and higher admission potassium, magnesium, and phosphate. Cluster 2 had a higher hospital (8.9% vs. 2.4%; p < 0.001) one-year mortality (32.9% vs. 14.8%; p < 0.001), and five-year mortality (24.5% vs. 51.1%; p < 0.001), compared with Cluster 1. Conclusion: Our cluster analysis classified clinically distinct phenotypes with different mortality risks among hospitalized patients with serum phosphate derangements. Age, comorbidities, and kidney function were the key features that differentiated the phenotypes.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Machine Learning Consensus Clustering Approach for Hospitalized Patients with Dysmagnesemia
    Thongprayoon, Charat
    Sy-Go, Janina Paula T.
    Nissaisorakarn, Voravech
    Dumancas, Carissa Y.
    Keddis, Mira T.
    Kattah, Andrea G.
    Pattharanitima, Pattharawin
    Vallabhajosyula, Saraschandra
    Mao, Michael A.
    Qureshi, Fawad
    Garovic, Vesna D.
    Dillon, John J.
    Erickson, Stephen B.
    Cheungpasitporn, Wisit
    [J]. DIAGNOSTICS, 2021, 11 (11)
  • [2] Machine Learning Consensus Clustering of Hospitalized Patients with Admission Hyponatremia
    Thongprayoon, Charat
    Hansrivijit, Panupong
    Mao, Michael A.
    Vaitla, Pradeep K.
    Kattah, Andrea G.
    Pattharanitima, Pattharawin
    Vallabhajosyula, Saraschandra
    Nissaisorakarn, Voravech
    Petnak, Tananchai
    Keddis, Mira T.
    Erickson, Stephen B.
    Dillon, John J.
    Garovic, Vesna D.
    Cheungpasitporn, Wisit
    [J]. DISEASES, 2021, 9 (03)
  • [3] Subtyping Hyperchloremia among Hospitalized Patients by Machine Learning Consensus Clustering
    Thongprayoon, Charat
    Nissaisorakarn, Voravech
    Pattharanitima, Pattharawin
    Mao, Michael A.
    Kattah, Andrea G.
    Keddis, Mira T.
    Dumancas, Carissa Y.
    Vallabhajosyula, Saraschandra
    Petnak, Tananchai
    Erickson, Stephen B.
    Dillon, John J.
    Garovic, Vesna D.
    Kashani, Kianoush B.
    Cheungpasitporn, Wisit
    [J]. MEDICINA-LITHUANIA, 2021, 57 (09):
  • [4] Phenotypic Characteristics of Hospitalized Patients with COVID-19 Pneumonia Using Machine Learning Consensus Clustering Approach
    Nalinthasnai, Nuttinan
    Eksombatchai, Dararat
    Boonsarngsuk, Viboon
    Theerawit, Pongdhep
    Sutherasan, Yuda
    Junhasavasdikul, Detajin
    Sangkanuparph, Somnuek
    Tassaneyasin, Tanapat
    Thammasudjarit, Ratchainant
    Petnak, Tananchai
    [J]. EUROPEAN RESPIRATORY JOURNAL, 2023, 62
  • [5] Subtyping hospitalized patients with hypokalemia by machine learning consensus clustering and associated mortality risks
    Thongprayoon, Charat
    Mao, Michael A.
    Kattah, Andrea G.
    Keddis, Mira T.
    Pattharanitima, Pattharawin
    Erickson, Stephen B.
    Dillon, John J.
    Garovic, Vesna D.
    Cheungpasitporn, Wisit
    [J]. CLINICAL KIDNEY JOURNAL, 2022, 15 (02) : 253 - 261
  • [6] Distinct phenotypes of hospitalized patients with hyperkalemia by machine learning consensus clustering and associated mortality risks
    Thongprayoon, Charat
    Kattah, Andrea G.
    Mao, Michael A.
    Keddis, Mira T.
    Pattharanitima, Pattharawin
    Vallabhajosyula, Saraschandra
    Nissaisorakarn, Voravech
    Erickson, Stephen B.
    Dillon, John J.
    Garovic, Vesna D.
    Cheungpasitporn, Wisit
    [J]. QJM-AN INTERNATIONAL JOURNAL OF MEDICINE, 2022, 115 (07) : 442 - 449
  • [7] Hypernatremia subgroups among hospitalized patients by machine learning consensus clustering with different patient survival
    Charat Thongprayoon
    Michael A. Mao
    Mira T. Keddis
    Andrea G. Kattah
    Grace Y. Chong
    Pattharawin Pattharanitima
    Voravech Nissaisorakarn
    Arvind K. Garg
    Stephen B. Erickson
    John J. Dillon
    Vesna D. Garovic
    Wisit Cheungpasitporn
    [J]. Journal of Nephrology, 2022, 35 : 921 - 929
  • [8] Hypernatremia subgroups among hospitalized patients by machine learning consensus clustering with different patient survival
    Thongprayoon, Charat
    Mao, Michael A.
    Keddis, Mira T.
    Kattah, Andrea G.
    Chong, Grace Y.
    Pattharanitima, Pattharawin
    Nissaisorakarn, Voravech
    Garg, Arvind K.
    Erickson, Stephen B.
    Dillon, John J.
    Garovic, Vesna D.
    Cheungpasitporn, Wisit
    [J]. JOURNAL OF NEPHROLOGY, 2022, 35 (03) : 921 - 929
  • [9] Machine Learning Consensus Clustering Approach for Patients with Lactic Acidosis in Intensive Care Units
    Pattharanitima, Pattharawin
    Thongprayoon, Charat
    Petnak, Tananchai
    Srivali, Narat
    Gembillo, Guido
    Kaewput, Wisit
    Chesdachai, Supavit
    Vallabhajosyula, Saraschandra
    O'Corragain, Oisin A.
    Mao, Michael A.
    Garovic, Vesna D.
    Qureshi, Fawad
    Dillon, John J.
    Cheungpasitporn, Wisit
    [J]. JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (11):
  • [10] Identification of distinct clinical phenotypes of cardiogenic shock using machine learning consensus clustering approach
    Li Wang
    Yufeng Zhang
    Renqi Yao
    Kai Chen
    Qiumeng Xu
    Renhong Huang
    Zhiguo Mao
    Yue Yu
    [J]. BMC Cardiovascular Disorders, 23