BIFURCATION AND MULTIPLICITY OF SOLUTIONS FOR THE FRACTIONAL LAPLACIAN WITH CRITICAL EXPONENTIAL NONLINEARITY

被引:0
|
作者
Mishra, Pawan Kumar [1 ]
Sreenadh, Konijeti [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, Hauz Khaz, New Delhi 16, India
关键词
Fractional Laplacian; bifurcation; exponential growth; ELLIPTIC-EQUATIONS; GROWTH; 1/2-LAPLACIAN;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the fractional elliptic equation (-Delta)(1/2)u = lambda u + vertical bar u vertical bar(p-2)ue(u2), in (-1, 1), u = 0 in R \ (-1, 1), where A is a positive real parameter, p > 2 and (-Delta)(1/2) is the fractional Laplacian operator. We show the multiplicity of solutions for this problem using an abstract critical point theorem of literature in critical point theory. Precisely, we extended the result of Cerami, Fortuno and Struwe [5] for the fractional Laplacian with exponential nonlinearity.
引用
收藏
页数:9
相关论文
共 50 条