Baking and plasma pretreatment of sapphire surfaces as a way to facilitate the epitaxial plasma-enhanced atomic layer deposition of GaN thin films

被引:19
|
作者
Liu, Sanjie [1 ]
Zhao, Gang [2 ]
He, Yingfeng [1 ]
Li, Yangfeng [3 ]
Wei, Huiyun [1 ]
Qiu, Peng [1 ]
Wang, Xinyi [1 ]
Wang, Xixi [1 ]
Cheng, Jiadong [1 ]
Peng, Mingzeng [1 ]
Zaera, Francisco [4 ]
Zheng, Xinhe [1 ]
机构
[1] Univ Sci & Technol Beijing, Beijing Key Lab Magnetophotoelect Composite & Int, Sch Math & Phys, Beijing 100083, Peoples R China
[2] Hunan Normal Univ, Sch Phys & Elect, Changsha 410081, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Key Lab Renewable Energy, Beijing Key Lab New Energy Mat & Devices,Beijing, Beijing 100190, Peoples R China
[4] Univ Calif Riverside, Dept Chem, Riverside, CA 92521 USA
基金
中国博士后科学基金; 北京市自然科学基金; 国家重点研发计划; 中国国家自然科学基金;
关键词
LIGHT-EMITTING-DIODES; OPTICAL-PROPERTIES; NUCLEATION LAYER; BUFFER LAYERS; GROWTH; SUBSTRATE; NITROGEN; SI(111); STRESS; STRAIN;
D O I
10.1063/5.0003021
中图分类号
O59 [应用物理学];
学科分类号
摘要
The growth of high-quality epitaxial gallium nitride (GaN) thin films is achieved by using a baking and plasma pretreatment of the substrate prior to the GaN plasma-enhanced atomic layer deposition (PE-ALD). It is found that such pretreatment makes the GaN films grow coherently on sapphire substrates, following a layer-by-layer growth mechanism. The deposited GaN film shows high crystalline quality, a sharp GaN/sapphire interface, and a flat surface. The possibility of growing high-quality GaN epilayers in this way broadens the range of applications for PE-ALD in GaN-based devices.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Epitaxial growth of InN thin films by plasma-enhanced atomic layer deposition
    Feng, Xingcan
    Peng, Hong
    Gong, Jinhui
    Wang, Wei
    Liu, Hu
    Quan, Zhijue
    Pan, Shuan
    Wang, Li
    JOURNAL OF APPLIED PHYSICS, 2018, 124 (24)
  • [2] Low temperature depositions of GaN thin films by plasma-enhanced atomic layer deposition
    Tang Wen-Hui
    Liu Bang-Wu
    Zhang Bo-Cheng
    Li Min
    Xia Yang
    ACTA PHYSICA SINICA, 2017, 66 (09)
  • [3] Plasma-enhanced atomic layer deposition of ruthenium thin films
    Kwon, OK
    Kwon, SH
    Park, HS
    Kang, SW
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (04) : C46 - C48
  • [4] Plasma-Enhanced Atomic Layer Deposition of Silver Thin Films
    Kariniemi, Maarit
    Niinisto, Jaakko
    Hatanpaa, Timo
    Kemell, Marianna
    Sajavaara, Timo
    Ritala, Mikko
    Leskela, Markku
    CHEMISTRY OF MATERIALS, 2011, 23 (11) : 2901 - 2907
  • [5] Remote plasma-enhanced atomic layer deposition of gallium oxide thin films with NHplasma pretreatment
    Hui Hao
    Xiao Chen
    Zhengcheng Li
    Yang Shen
    Hu Wang
    Yanfei Zhao
    Rong Huang
    Tong Liu
    Jian Liang
    Yuxin An
    Qing Peng
    Sunan Ding
    Journal of Semiconductors, 2019, (01) : 97 - 103
  • [6] Plasma-Enhanced Atomic Layer Deposition of AlN Epitaxial Thin Film for AlN/GaN Heterostructure TFTs
    Liu, Cheng
    Liu, Shenghou
    Huang, Sen
    Chen, Kevin J.
    IEEE ELECTRON DEVICE LETTERS, 2013, 34 (09) : 1106 - 1108
  • [7] Hydrogen plasma-enhanced atomic layer deposition of copper thin films
    Wu, Liqi
    Eisenbraun, Eric
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2007, 25 (06): : 2581 - 2585
  • [8] Remote plasma-enhanced atomic layer deposition of gallium oxide thin films with NH3 plasma pretreatment
    Hao, Hui
    Chen, Xiao
    Li, Zhengcheng
    Shen, Yang
    Wang, Hu
    Zhao, Yanfei
    Huang, Rong
    Liu, Tong
    Liang, Jian
    An, Yuxin
    Peng, Qing
    Ding, Sunan
    JOURNAL OF SEMICONDUCTORS, 2019, 40 (01)
  • [9] Remote plasma-enhanced atomic layer deposition of gallium oxide thin films with NH3 plasma pretreatment
    Hui Hao
    Xiao Chen
    Zhengcheng Li
    Yang Shen
    Hu Wang
    Yanfei Zhao
    Rong Huang
    Tong Liu
    Jian Liang
    Yuxin An
    Qing Peng
    Sunan Ding
    Journal of Semiconductors, 2019, 40 (01) : 97 - 103
  • [10] Growing oriented AlN films on sapphire substrates by plasma-enhanced atomic layer deposition
    V. A. Tarala
    A. S. Altakhov
    M. G. Ambartsumov
    V. Ya. Martens
    Technical Physics Letters, 2017, 43 : 74 - 77