von Neumann's hypothesis concerning coherent states

被引:5
|
作者
Zak, J [1 ]
机构
[1] Technion Israel Inst Technol, Dept Phys, IL-32000 Haifa, Israel
来源
关键词
D O I
10.1088/0305-4470/36/42/L02
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An orthonormal basis of modified coherent states is constructed. Each member of the basis is an infinite sum of coherent states on a von Neumann lattice. A single state is assigned to each unit cell of area h (Planck constant) in the phase plane. The uncertainties of the coordinate x and the square of the momentum p(2) for these states are shown to be similar to those for the usual coherent states. Expansions in the newly established set are discussed and it is shown that any function in the kq-representation can be written as a sum of two fixed kq-functions. Approximate commuting operators for x and p(2) are defined on a lattice in phase plane according to von Neumann's prescription.
引用
收藏
页码:L553 / L560
页数:8
相关论文
共 50 条
  • [1] DISCRETE COHERENT STATES ON THE VON NEUMANN LATTICE
    BOON, M
    ZAK, J
    PHYSICAL REVIEW B, 1978, 18 (12): : 6744 - 6751
  • [2] Orthonormal coherent states on von Neumann lattices
    Zak, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (05): : 1063 - 1069
  • [3] Superposition of coherent states on a truncated von Neumann lattice
    Aguilar, LMA
    Moya-Cessa, H
    PHYSICA SCRIPTA, 2004, 70 (01) : 14 - 16
  • [4] Robust quantum state engineering using coherent states on a truncated von Neumann lattice
    Stergioulas, LK
    Vourdas, A
    JOURNAL OF MODERN OPTICS, 1998, 45 (06) : 1155 - 1161
  • [5] Stories and recollections concerning John Von Neumann
    Horvath, J
    ARBOR-CIENCIA PENSAMIENTO Y CULTURA, 2003, 175 (692) : 1369 - 1375
  • [6] Von Neumann invariants of coherent analytic sheaves
    Eyssidieux, P
    MATHEMATISCHE ANNALEN, 2000, 317 (03) : 527 - 566
  • [7] On the Commutativity of States in von Neumann Algebras
    Andrzej Łuczak
    Results in Mathematics, 2023, 78
  • [8] On the Commutativity of States in von Neumann Algebras
    Luczak, Andrzej
    RESULTS IN MATHEMATICS, 2023, 78 (04)
  • [9] Distinguishability of states and von Neumann entropy
    Jozsa, Richard
    Schlienz, Jürgen
    Physical Review A - Atomic, Molecular, and Optical Physics, 2000, 62 (01): : 012301 - 012301
  • [10] The von Neumann Entropy for Mixed States
    Anaya-Contreras, Jorge A.
    Moya-Cessa, Hector M.
    Zuniga-Segundo, Arturo
    ENTROPY, 2019, 21 (01):