Skew Dyck Paths Having no Peaks at Level 1

被引:0
|
作者
Prodinger, Helmut [1 ,2 ]
机构
[1] Stellenbosch Univ, Dept Math Sci, ZA-7602 Stellenbosch, South Africa
[2] NITheCS Natl Inst Theoret & Computat Sci, Stellenbosch, South Africa
关键词
Skew Dyck path; peak; forbidden pattern; generating function; kernel method;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Skew Dyck paths are a variation of Dyck paths, where in addition to the steps (1, 1) and (1, -1), a south-west step (-1, -1) is also allowed, provided that the path does not intersect itself. Replacing the south-west step by a red south-east step, we end up with decorated Dyck paths. Sequence A128723 of the On-Line Encyclopedia of Integer Sequences (OEIS) considers such paths where peaks at level 1 are forbidden. We provide a thorough analysis of a more general scenario, namely partial decorated Dyck paths, ending on a prescribed level j, both from left-to-right and from right-to-left (decorated Dyck paths are not symmetric). The approach is completely based on generating functions.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Peaks in Dyck paths
    Deutsch, Emeric
    AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (03): : 264 - 265
  • [2] Skew Dyck paths
    Deutsch, Emeric
    Munarini, Emanuele
    Rinaldi, Simone
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (08) : 2191 - 2203
  • [3] Skew Dyck paths with catastrophes
    Prodinger, Helmut
    DISCRETE MATHEMATICS LETTERS, 2022, 10 : 9 - 13
  • [4] Counting Prefixes of Skew Dyck Paths
    Baril, Jean-Luc
    Ramirez, Jose L.
    Simbaqueba, Lina M.
    JOURNAL OF INTEGER SEQUENCES, 2021, 24 (08)
  • [5] Generation of Dyck paths with increasing peaks
    Penaud, JG
    Roques, O
    DISCRETE MATHEMATICS, 2002, 246 (1-3) : 255 - 267
  • [6] Skew Dyck paths with air pockets
    Baril, Jean-Luc
    Marechal, Remi
    Prodinger, Helmut
    AEQUATIONES MATHEMATICAE, 2025, 99 (01) : 257 - 274
  • [7] Enumerating symmetric and asymmetric peaks in Dyck paths
    Florez, Rigoberto
    Ramirez, Jose L.
    DISCRETE MATHEMATICS, 2020, 343 (12)
  • [8] Symmetric peaks and symmetric valleys in Dyck paths
    Elizalde, Sergi
    DISCRETE MATHEMATICS, 2021, 344 (06)
  • [9] Nonleft peaks in Dyck paths: A combinatorial approach
    Manes, K.
    Sapounakis, A.
    Tasoulas, I.
    Tsikouras, P.
    DISCRETE MATHEMATICS, 2014, 337 : 97 - 105
  • [10] Skew Dyck paths, area, and superdiagonal bargraphs
    Deutsch, Emeric
    Munarini, Emanuele
    Rinaldi, Simone
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (06) : 1550 - 1562