A TOPOLOGICAL INVARIANT FOR CONTINUOUS FIELDS OF CUNTZ ALGEBRAS II

被引:1
|
作者
Sogabe, Taro [1 ]
机构
[1] Kyoto Univ, Grad Sch Sci, Kyoto, Japan
关键词
D O I
10.1090/proc/15696
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate an invariant for continuous fields of the Cuntz al-gebra On+1 introduced by Taro Sogabe [Math. Ann. 380 (2021), pp. 91-117], and find a way to obtain a continuous field of Mn(O-infinity) from that of On+1 using the construction of the invariant. By Brown's representability theorem, this gives a bijection from the set of the isomorphism classes of continuous fields of On+1 to those of Mn(O-infinity). As a consequence, we obtain a new proof for M. Dadarlat's classification result of continuous fields of On+1 arising from vector bundles, which corresponds to those of Mn(O-infinity) stably isomorphic to the trivial field.
引用
收藏
页码:1059 / 1070
页数:12
相关论文
共 50 条
  • [1] A topological invariant for continuous fields of Cuntz algebras
    Sogabe, Taro
    [J]. MATHEMATISCHE ANNALEN, 2021, 380 (1-2) : 91 - 117
  • [2] A topological invariant for continuous fields of Cuntz algebras
    Taro Sogabe
    [J]. Mathematische Annalen, 2021, 380 : 91 - 117
  • [3] Convex topological algebras via linear vector fields and Cuntz algebras
    Bock, Wolfgang
    Futorny, Vyacheslav
    Neklyudov, Mikhail
    [J]. JOURNAL OF PURE AND APPLIED ALGEBRA, 2021, 225 (03)
  • [4] Noncommutative Topological Entropy of Endomorphisms of Cuntz Algebras II
    Skalski, Adam
    [J]. PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2011, 47 (04) : 887 - 896
  • [5] Endomorphisms of continuous Cuntz algebras
    Zacharias, J
    [J]. JOURNAL OF OPERATOR THEORY, 2001, 46 (03) : 561 - 577
  • [6] The Cuntz semigroup as an invariant for C*-algebras
    Coward, Kristofer T.
    Elliott, George A.
    Ivanescu, Cristian
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 623 : 161 - 193
  • [7] On Invariant MASAs for Endomorphisms of the Cuntz Algebras
    Hong, Jeong Hee
    Skalski, Adam
    Szymanski, Wojciech
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (06) : 1873 - 1892
  • [8] Continuous orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras
    Matsumoto, Kengo
    Matui, Hiroki
    [J]. KYOTO JOURNAL OF MATHEMATICS, 2014, 54 (04) : 863 - 877
  • [9] Embedding of continuous fields of C*-algebras in the Cuntz algebra O2
    Kirchberg, E
    Phillips, NC
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2000, 525 : 55 - 94
  • [10] The Cuntz Semigroup of Continuous Fields
    Antoine, Ramon
    Bosa, Joan
    Perera, Francesc
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (04) : 1105 - 1131