Adaptive phase plates for optical encoding systems invariant to second-order aberrations

被引:2
|
作者
Acosta, Eva [1 ]
机构
[1] Univ Santiago de Compostela, Fac Phys, Dept Appl Phys, Santiago De Compostela 15782, Spain
关键词
Computational imaging; Aberrations; Image reconstruction; FRONT; MICROSCOPY; SHIFT; DEPTH; FIELD;
D O I
10.1016/j.optcom.2011.04.041
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Certain optical aberrations of imaging systems yield low resolution images. Wavefront coding has proven to minimise this problem by means of hybrid optical-digital imaging systems. The optical part usually involves a phase plate described in terms of cubic polynomials whose shape is a linear combination of (x(3) + y(3)) and (x(2)y + xy(2)) Optimization is achieved by seeking the most appropriate linear combination with respect to the optical system's constraints. Here, we propose the shape of two pairs of phase plates such that by means of relative rotations they allow for variation of the linear combination of the cubic terms. This will enable adaptive optimization of the cubic phase to the optical system's constraints when these vary in time. Results will be illustrated with numerical simulations. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3862 / 3866
页数:5
相关论文
共 50 条
  • [1] Optical system invariant to second-order aberrations
    Samokhin, Alexander B.
    Simonov, Aleksey N.
    Rombach, Michiel C.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2009, 26 (04) : 977 - 984
  • [2] Adaptive stabilization of second-order non-minimum-phase systems
    Roup, AV
    Bernstein, DS
    PROCEEDINGS OF THE 2003 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2003, : 225 - 230
  • [3] ADAPTIVE RELAY CONTROL OF SECOND-ORDER SYSTEMS
    ZINOBER, ASI
    INTERNATIONAL JOURNAL OF CONTROL, 1975, 21 (01) : 81 - 98
  • [4] Second-order aberrations of graded-index optical systems with small violations of axial symmetry
    Il'inskii, RE
    OPTICS AND SPECTROSCOPY, 1998, 84 (06) : 933 - 937
  • [5] Properties of second-order geometrical aberrations
    Grammatin, A.P.
    Journal of Optical Technology, 1994, 61 (08)
  • [6] Tetrathiafulvalene systems for second-order optical nonlinearity
    Andreu, R
    Malfant, I
    Lacroix, PG
    Cassoux, P
    SYNTHETIC METALS, 1999, 102 (1-3) : 1575 - 1576
  • [7] Tetrathiafulvalene systems for second-order optical nonlinearity
    Lab. de Chim. de Coordination , 205, route de Narbonne, 31077 Toulouse Cedex, France
    Synth Met, 1 -3 pt 2 (1575-1576):
  • [8] Invariant classification of second-order conformally flat superintegrable systems
    Capel, J. J.
    Kress, J. M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (49)
  • [9] An Adaptive Method for Reducing Second-order Dynamical Systems
    Aumann, Quirin
    Mueller, Gerhard
    IFAC PAPERSONLINE, 2022, 55 (20): : 337 - 342
  • [10] Output feedback adaptive stabilization of second-order systems
    Sane, HS
    Sussmann, HJ
    Bernstein, DS
    PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 3138 - 3142