Accuracy-constrained optimisation methods for staggered-grid elastic wave modelling

被引:4
|
作者
Chen, Jing-Bo [1 ,2 ]
Dai, Meng-Xue [2 ]
机构
[1] Chinese Acad Sci, Inst Geol & Geophys, Key Lab Petr Resources Res, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
FINITE-DIFFERENCE SCHEMES; PSEUDOSPECTRAL METHOD; LEAST-SQUARES; EQUATION; BOUNDARY; PROPAGATION; MEDIA;
D O I
10.1111/1365-2478.12571
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The classical finite-difference methods for seismic wave modelling are very accurate at low wavenumbers but suffer from inaccuracies at high wavenumbers, particularly at Nyquist wavenumber. In contrast, the optimisation finite-difference methods reduce inaccuracies at high wavenumbers but suffer from inaccuracies at low wavenumbers, particularly at zero wavenumber when the operator length is not long and the whole range of wavenumbers is considered. Inaccuracy at zero wavenumber means that the optimisation methods only have a zeroth-order accuracy of truncation and thus are not rigorously convergent. To guarantee the rigorous convergence of the optimisation methods, we have developed accuracy-constrained optimisation methods. Different-order accuracy-constrained optimisation methods are presented. These methods not only guarantee the rigorous convergence but also reduce inaccuracies at low wavenumbers. Accuracy-constrained optimisation methods are applied to staggered-grid elastic wave modelling.
引用
收藏
页码:150 / 165
页数:16
相关论文
共 50 条
  • [1] A staggered-grid convolutional differentiator for elastic wave modelling
    Sun, Weijia
    Zhou, Binzhong
    Fu, Li-Yun
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 301 : 59 - 76
  • [2] Staggered-grid spectral element methods for elastic wave simulations
    Chung, Eric T.
    Yu, Tang Fei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 285 : 132 - 150
  • [3] Least squares staggered-grid finite-difference for elastic wave modelling
    Yang, Lei
    Yan, Hongyong
    Liu, Hong
    EXPLORATION GEOPHYSICS, 2014, 45 (04) : 255 - 260
  • [4] A hybrid absorbing boundary condition for elastic staggered-grid modelling
    Liu, Yang
    Sen, Mrinal K.
    GEOPHYSICAL PROSPECTING, 2012, 60 (06) : 1114 - 1132
  • [5] Optimized equivalent staggered-grid FD method for elastic wave modelling based on plane wave solutions
    Yong, Peng
    Huang, Jianping
    Li, Zhenchun
    Liao, Wenyuan
    Qu, Luping
    Li, Qingyang
    Liu, Peijun
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2017, 208 (02) : 1157 - 1172
  • [6] Mixed-grid and staggered-grid finite-difference methods for frequency-domain acoustic wave modelling
    Hustedt, B
    Operto, S
    Virieux, J
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2004, 157 (03) : 1269 - 1296
  • [7] Algorithms for staggered-grid computations for poroelastic, elastic, acoustic, and scalar wave equations
    Ozdenvar, T
    McMechan, GA
    GEOPHYSICAL PROSPECTING, 1997, 45 (03) : 403 - 420
  • [8] A staggered-grid lowrank finite-difference method for elastic wave extrapolation
    Du, Qizhen
    Ba, Jing
    Han, Dong
    Sun, Pengyuan
    Zhang, Jianlei
    ANNALS OF GEOPHYSICS, 2020, 63 (03) : 1 - 20
  • [9] Simulating elastic wave using temporal high accuracy and implicit spatial rectangular staggered-grid finite-difference approaches
    Xu ShiGang
    Bao QianZong
    Ren ZhiMing
    Liu Yang
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2022, 65 (04): : 1389 - 1401
  • [10] Simulating elastic wave using temporal high accuracy and implicit spatial rectangular staggered-grid finite-difference approaches
    Xu, Shigang
    Bao, Qianzong
    Ren, Zhiming
    Liu, Yang
    Acta Geophysica Sinica, 2022, 65 (04): : 1389 - 1401